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1. Partial Metrics

Samer Assaf
University of Saskatchewan; Saskatoon, Saskatchewan, Canada

ska680@mail.usask.ca

Let ρ be a partial metric on X [40]. The sets

Bρ
ϵ (x) = {y ∈ X : ρ(x, y)− ρ(x, y) < ϵ}

form a basis for a T0 space on X [14]. A ρ-gilded ball [4](referred to as a
closed ball in the metric case) is given by

B̄ρ
ϵ = {y ∈ X : ρ(x, y)− ρ(x, y) ≤ ϵ}.

One of the challenges we come across is that, in a partial metric space
(X, ρ), a ρ-gilded ball need not be topologically closed.

Question 1. When is a topological space X partially metrizable?

Question 2. When is the partial metric topology on X compact?

In [5], Samer Assaf and Koushik Pal introduced the axioms of a strong
partial metric. It is trivial to show that if the partial metric space (X, ρ)
is T1, then ρ is a strong partial metric.

Question 3. Can we strengthen the strong partial metric axioms to gen-
erate a T2 space that need not be T3? A T3 space that need not be T4?
A T4 space that need not be metrizable?

The question below goes hand in hand with the question above.

Question 4. If the partial metric space is T2, must (X, ρ) be metrizable?
What if the partial metric space is T3 or T4?

2. Some Problems on Monotone Normality

Harold Bennett and David Lutzer
Texas Tech University; Lubbock, TX, USA; and

College of William and Mary; Williamsburg, VA, USA
lutzer@math.wm.edu

The first problem involves paracompactness in monotonically normal
spaces. The fundamental paper about paracompactness in monotonically
normal spaces is [8], written by Z. Balogh and M. E. Rudin. In it they gen-
eralize an earlier result of R. Engelking and D. Lutzer [27] for generalized
ordered spaces (GO-spaces) by proving the following theorem.
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Theorem 1. A monotonically normal space X is paracompact if and
only if X does not contain a closed subspace that is homeomorphic to a
stationary set in a regular uncountable ordinal.

In her encyclopedia article [48], Rudin comments that Theorem 1 gen-
eralizes each of about twenty known paracompactness results for gener-
alized ordered spaces to the class of monotonically normal spaces. The
proofs have the following form. We suppose that a monotonically normal
space X has a closed-hereditary property P (e.g., metacompactness or a
Gδ-diagonal). If X is not paracompact, then Theorem 1 gives a station-
ary subset S of a regular uncountable ordinal that is homeomorphic to a
closed subspace of X. Then S inherits property P from X. Finally, one
verifies that no stationary subspace of a regular uncountable ordinal can
have property P, and that completes the proof. But in one case, there is
a problem. It is known [10] that a GO-space with a σ-minimal base must
be paracompact. (Recall that a collection M is minimal if each M ∈ M
contains a point that is not in any other member of M, and “σ-minimal”
means “a countable union of minimal collections.”) Unfortunately, the
property “X has a σ-minimal base” is not closed hereditary. In fact, Den-
nis K. Burke has shown that any space is a closed subspace of some space
with a σ-minimal base [15].) Consequently, we have the following.

Problem 2. Suppose X is a monotonically normal space that has a σ-
minimal base. Is X paracompact?

The second problem asks about metrization of spaces that have mono-
tonically normal compactifications. (For example, any GO-space is of this
type, but not every metric space [34].) In [47], Rudin establishes a deep
link between compact monotonically normal spaces and compact linearly
ordered topological spaces (LOTS) by proving the following theorem.

Theorem 3. A compact space X is monotonically normal if and only if
there is a compact LOTS L and a continuous mapping f from L onto X.

Standard techniques prove the first sentence of the next corollary and
some order-space trickery (see [11]) gives the second sentence.

Corollary 4. If X is a space with a monotonically normal compactifica-
tion, then there is a GO-space Y and a perfect irreducible mapping g from
Y onto X. In addition, one can arrange that if a < b are points of Y
with (a, b) = ∅, (i.e., if a and b are jump points of Y ), then g(a) ̸= g(b).

Corollary 4 led us to wonder whether certain metrization theorems
for GO-spaces might be generalized to spaces with monotonically nor-
mal compactifications. Perhaps the most important such theorem (that
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does not mention the ordering of the GO-space) asserts that any semi-
stratifiable GO-space is metrizable. Attempting to generalize that result,
in [11] we proved the following.

Proposition 5. Suppose X is semi-stratifiable and has a monotonically
normal compactification. Then X is metrizable if any one of the following
holds:

(a) There is a σ-locally finite cover of X by closed metrizable sub-
spaces.

(b) There is a σ-locally finite cover of X by compact subspaces.
(c) X =

∪
{Yn : n ≥ 1} where each Yn is a closed discrete subspace

of X.
(d) X is scattered, or σ-compact, or countable.

Proposition 5 leads to the following problem.

Problem 6. Suppose X is a semi-stratifiable space with a monotonically
normal compactification. Must X be metrizable? 1

If one is searching for counterexamples to Problem 6, it might be use-
ful to know that any semi-stratifiable space with a monotonically normal
compactification must be first countable and must be a union of dense,
metrizable subspaces [11]. This narrows the scope of possible counterex-
amples because any counterexample must be a Nagata space (= first-
countable stratifiable space) in the sense of Jack G. Ceder [18] and Carlos
J. R. Borges [12].

There are many properties other than semi-stratifiability that give
metrizability in a GO-space, and this suggests a more general question.

Problem 7. Suppose P is a topological property and suppose that any
GO-space with property P must be metrizable. Is it true that if X has
property P and has a monotonically normal compactification, then X must
be metrizable?

1This problem was recently answered in the affirmative by Gary Gruenhage and
David J. Lutzer [29].
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3. 2-Markov Strategies in Selection Games

Steven Clontz
University of South Alabama; Mobile, AL, USA

steven.clontz@gmail.com

Let Sω
fin(A,B) be the statement that whenever An ∈ A for n < ω,

there exist Bn ∈ [An]
<ω such that

∪
{Bn : n < ω} ∈ B. This selection

principle characterizes a property of a topological space X when A and
B are defined in terms of X. For example, if OX is the collection of
open covers of X, then Sω

fin(OX ,OX) is the well-known Menger covering
property.

This property may be made stronger by considering the following two-
player game of length ω: Gω

fin(A,B). During each round n < ω, the first
player A chooses An ∈ A, followed by B choosing Bn ∈ [An]

<ω. B
wins the game if

∪
{Bn : n < ω} ∈ B; otherwise, A wins. If B has a

winning strategy for the game (a function which defines a move for each
finite sequence of previous moves by A and beats every possible response
by A ), then we write B ↑ Gω

fin(A,B).
These concepts were first introduced by Marion Scheepers in [49]. Of

course, B ↑ Gω
fin(A,B) ⇒ Sω

fin(A,B), but the converse need not hold
since each Bn may be defined in Sω

fin(A,B) using knowledge of all An,
not just those “previously played.” Thus, for each topological property P
characterized by Sω

fin(A,B), we denote the (possibly) stronger property
B ↑ Gω

fin(A,B) as strategic P .
Such notions may be made even stronger using limited information

strategies. A k-Markov strategy for B uses only the last k moves of A
and the round number. When B has a winning k-Markov strategy for
Gω

fin(A,B), we write B ↑
k-mark

Gω
fin(A,B). Similarly, for each topological

property P characterized by Sω
fin(A,B), we denote property B ↑

k-mark
Gω

fin(A,B) as k-Markov P .
In the case of the selection game Gω

fin(A,B), it may be shown that a
(k+2)-Markov strategy may always be improved to a 2-Markov strategy,
as shown in [21] with regards to Gω

fin(OX ,OX).

The following natural question is open.

Question 1. Do there exist (interesting/topological) A and B such that
B ↑ Gω

fin(A,B) but B ̸↑
2-mark

Gω
fin(A,B)?

Consider the case that A = B = OX , i.e., the Menger game. The
following summarize results from [50], [21], and [22].
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Definition 2. For any cardinal κ, let κ† = κ ∪ {∞} denote the one-
point Lindelöfication of discrete κ, where points in κ are isolated and the
neighborhoods of ∞ are co-countable.

Proposition 3. B ↑ Gω
fin(Oκ† ,Oκ†).

Definition 4. For two functions f and g, we say f is almost compatible
with g if |{x ∈ dom(f) ∩ dom(g) : f(x) ̸= g(x)}| < ω.

Definition 5. A′(κ) states that there exists a collection of pairwise al-
most compactible finite-to-one functions {fA ∈ ωA : A ∈ [κ]≤ω}.

Theorem 6. A′(ωn) holds for all n < ω.

Theorem 7. A′(κ) implies B ↑
2-mark

Gω
fin(Oκ† ,Oκ†).

Theorem 8. For any cardinal κ, κ Cohen reals may be added to a model
of ZFC + CH while preserving A′(c).

Theorem 9. There exists a model of ZFC where A′(ωω) fails.

Theorem 10. B ↑
2-mark

Gω
fin(Oω†

ω
,Oω†

ω
).

It remains open whether B ↑
2-mark

Gω
fin(Oω†

ω+1
,Oω†

ω+1
) might fail when

A′(ωω) fails. Due to the above, any attempt to show B ̸↑
2-mark

Gω
fin(Oκ† ,Oκ†)

cannot happen solely within ZFC.

4. Symmetrizable L-spaces

Sheldon Davis
University of Texas at Tyler; Tyler, TX, USA

sdavis@uttyler.edu

S. Nedev [42] showed every Lindelöf symmetrizable space is hereditarily
Lindelöf. I. Juhász, Z. Nagy, and Z. Szentmiklóssy [32] showed there
is a Hausdorff nonseparable Lindelöf symmetrizable space assuming CH,
while Balogh, Burke and S. W. Davis [7] showed there is a Hausdorff
nonseparable Lindelöf symmetrizable space in ZFC. D. B. Shakhmatov
[51] showed it is consistent with ZFC that there is a regular nonseparable
Lindelöf symmetrizable space.

Question 1. Is there a regular symmetrizable L-space in ZFC?
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Justin Tatch Moore [41] showed that L-spaces exist in ZFC, while Stevo
Todorcević showed it is consistent with ZFC that there are no S-spaces.
It is consistent that both S-spaces and L-spaces exist, and if there is an S-
space, then there is an uncountable right separated S-space, and if there is
an L-space, then there is an uncountable left separated L-space. There are
no uncountable symmetrizable Lindelöf left separated spaces [7]. Nedev
[42] showed there are no symmetrizable S-spaces.

5. Countably compact, Sequentially Compact,
Sequential, Noncompact Spaces

of Countable Tightness

Alan Dow
University of North Carolina at Charlotte; Charlotte, NC, USA

adow@uncc.edu

A space has countable tightness if the closure of any set is the union
of the closures of its countable subsets. A set is sequentially closed if no
sequence from the set converges to a point outside the set. A space is
sequential if every sequentially closed set is closed. A countably compact
sequential space is sequentially compact.

Problem 1. Is there a ZFC example of a Tychonoff countably compact
noncompact space of countable tightness which does not contain a copy of
ω1? Can the space even be sequential or just sequentially compact?

Problem 2. Does the proper forcing axiom (PFA) imply that every infi-
nite countably compact space of countable tightness contains a non-trivial
converging sequence?

One might well rephrase the first question to ask if PFA implies that
a noncompact countably compact space will contain a copy of ω1 if the
space has countable tightness or is even sequential. Clearly, a negative
answer to the second problem would be a stronger result. It has proven
very useful to be able to prove the existence of copies of ω1 [43]. A non-
compact countably compact space will carry a countably complete free
maximal filter F of closed subsets. There is a proper poset that forces
that there is an uncountable free sequence S = {xα : α ∈ ω1} with the
property that S \F is countable for all F ∈ F (see [6]). If X has character
at most ω1, then PFA implies this free sequence can be chosen to be a
copy of ω1 [23]. It is even sufficient that X has a sufficiently rich supply
of points of countable character for this to hold under PFA. For example,
PFA implies that if X is ℵ0-bounded, then X will contain a copy of ω1
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[26]. Recall that PFA implies that compact spaces of countable tightness
are sequential and have a rich supply of points of countable character [6],
[23].

It follows from PFA that there are countably compact spaces of count-
able tightness that are not sequential nor sequentially compact [24]. How-
ever, it is not clear just how far from sequential a countably compact
countably tight space can be. In particular, while we do not know if
there is a rich enough supply of points of countable character, it is known
to be consistent with CH that there is quite a rich supply of converging
sequences in any countably compact space of countable tightness [25].

6. Preservation of a Neighborhood Base
of a Closed Discrete Set

Akira Iwasa
University of South Carolina Beaufort; Beaufort, SC, USA

iwasa@uscb.edu

Let ⟨X, τ⟩ be a topological space. Let V be a ground model and let VP

be the forcing extension of V by the forcing P. We define a topological
space ⟨X, τP⟩ in VP such that τP is the topology generated by τ . Let us
give some key definitions.

Definition 1. We say that a forcing P destroys a neighborhood base of a
closed set A if there is W ∈ τP such that A ⊆ W and for every U ∈ τ with
A ⊆ U , we have U * W . If a forcing P does not destroy a neighborhood
base of A, then we say that P preserves a neighborhood base of A.

Note that if a closed set A is a singleton, then a neighborhood base
of A is preserved by any forcing. For x ∈ X, let N (x) be the set of all
neighborhoods of x.

Definition 2. Let ⟨X, τ⟩ be a topological space. We define a cardinal
function φ such that for a non-isolated point x ∈ X,

φ(x) = min
{
|U| : U ⊆ N (x),

∩
U /∈ N (x)

}
;

for an isolated point x, let φ(x) be undefined.
Note that if X is a first countable T1-space, then for every non-isolated

x ∈ X, we have φ(x) = ℵ0.

Definition 3. A forcing P is said to satisfy the countable covering prop-
erty if for every countable set A ∈ VP such that A ⊆ V, there is a
countable set B ∈ V such that A ⊆ B.
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It is not difficult to show the following proposition.

Proposition 4. Let ⟨X, τ⟩ be a regular topological space and let I be the
set of all isolated points in X. Let A be a closed discrete subset of X such
that

• |A \ I| = ℵ0, and
• (∀a ∈ A \ I)(φ(a) = ℵ0).

Then a forcing that satisfies the countable covering property destroys a
neighborhood base of A.

In fact, adding a Cohen real destroys a neighborhood base of A in the
above proposition. If a closed discrete set A is uncountable, then I do
not know if a forcing that satisfies the countable covering property and
destroys a neighborhood base of A can always be found.

Question 5. Let ⟨X, τ⟩ be a regular topological space and let I be the
set of isolated points of X. Let A be a closed discrete subset of X such
that

• |A \ I| > ℵ0, and
• (∀a ∈ A \ I)(φ(a) = ℵ0).

Does some forcing that satisfies the countable covering property destroy
a neighborhood base of A?

7. Compact Jónsson–Tarski Algebras

Ernie Manes
University of Massachusetts at Amherst; Amherst, MA, USA

manes@math.umass.edu

To be more precise, a Jónsson–Tarski algebra [31] is (X,m, u, v) with
X a set and m : X ×X → X and u, v : X → X operations which satisfy
the equations

m(ux, vx) = x

um(x, y) = x

vm(x, y) = y.

These equations simply state that m is bijective with inverse x 7→ (ux, vx).
This equational class was invented to provide an example wherein all
finitely generated free algebras are isomorphic.

For any equational class E there is the class KE of all E-algebras with
a compact Hausdorff topology in such a way that the E-operations are
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continuous. The morphisms are those continuous maps which additionally
commute with the E-operations. Thus, if J T is the class of Jónsson–
Tarski algebras, the morphisms in KJT are continuous maps f which
also satisfy m(fx, fy) = f m(x, y), f(ux) = u fx, and f(vx) = v fx. The
objects are just compact spaces homeomorphic to their square, but the
morphisms are more than continuous.

Any category KE is isomorphic to the category of algebras of a monad
of sets [37]. Such a category has lots of constructions. For example, it
has coequalizers of pairs of maps and arbitrary coproducts.

Question 1. How are coproducts constructed in KJT ?

For X in KJT , x ∈ X, the orbit of x is the set of all tx as t ranges
over all unary operations derived from m, u, and v. Examples of such tx
are m(x, x), m(ux, x), and m(uvux,m(vx, vvx)). Notice that m(ux, ux)
is idempotent and m(vx, ux) is invertible. X is minimal if every orbit is
dense. The Cantor set 2ω admits a minimal structure [36].

Let F be the free algebra on one generator in KJT . It is tempting to
speculate that F = βM where M is the monoid of all unary operations
derived from m, u, and v. This is not possible since M is countable,
whereas βω is not homeomorphic to its square.

Question 2. What is a concrete construction for F?

F contains a minimal algebra I and it is unique up to isomorphism
[39]. Every minimal admits a surjective map from I. F is separable.
Therefore, c ≤ |F | ≤ 2c.

Question 3. What is the largest cardinality of a minimal algebra in
KJT ?

In effect, Question 3 asks for the cardinality of the minimal algebra in
F .

8. Weights of Dyadic Spaces

David Milovich
Texas A&M International University; Laredo, TX, USA

david.milovich@tamiu.edu

A topological space X is dyadic if X is the continuous image of some
2κ. A topological space X is supercompact if X has a subbase B where if
U ⊂ B is a cover of X, then there are U0, U1 ∈ U which cover X.
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Question 1. What is the least weight of a dyadic non-supercompact
space?

Remark 2. The only known example, due to Murray G. Bell [9], has
weight ℵ3.

The motivation is finding interesting “phase transitions” at weight ℵ3

in analogy with E. V. Ščepin’s results [52] about how several natural
functors, including the Vietoris hyperspace functor and the symmetric
power functors, behave very differently on spaces of weight less than ℵ2

from the way they behave on space of weight ≥ ℵ2.

9. Problems on Monotone Covering Properties

John E. Porter
Murray State University; Murray, KY, USA

jporter@murraystate.edu

Given a covering property P, one can define a monotone version of
the covering property by requiring an operator r that assigns the right
kind of refinement to each acceptable open covering U in such a way
that r(U) refines r(V) whenever U refines V. For example, Strashimir
G. Popvassilev [44] calls a space monotonically (countably) metacompact
if one can assign to every (countable) open cover U a point-finite open
cover r(U) that refines U so that r(U) refines r(V) whenever U refines V.

Timothy Chase and Gary Gruenhage [19] show that compact mono-
tonically countably metacompact spaces are metrizable, and Gruenhage
announced at the conference that he and Chase [20] have proven that
separable monotonically countably metacompact spaces are also metriz-
able. Chase and Gruenhage’s results simultaneously generalize similar
results for proto-metrizable spaces and Moore spaces. Can Chase and
Gruenhage’s results be further generalized? Recall that a space is ortho-
compact if every open cover has an interior preserving open refinement.
That is, every open cover has an open refinement, with the further prop-
erty that at any point, the intersection of all open sets in the refinement
containing that point is also open.

Question 1. Are compact monotonically orthocompact spaces metriz-
able?

Remark 2. The separable version of Question 1 has a negative answer.
Popvassilev [45] has shown that the Sorgenfrey line is monotonically or-
thocompact.
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Recall that a space X is proto-metrizable if X is paracompact and
has an ortho-base. P. M. Gartside and P. J. Moody [28] show that a
space is proto-metrizable if and only if X has a monotone operator r such
that r(U) star-refines U . Popvassilev and John E. Porter [46] show that
proto-metrizable spaces possess a monotone locally finite operator.

Question 3. Are metacompact spaces with an ortho-base monotonically
(countably) metacompact?

In general, it seems that little is known about the class of metacompact
spaces with an ortho-base.

10. Problems on Sequential Groups

Alex Shibakov
Tennessee Technical University; Cookville, TN, USA

ashibakov@tntech.edu

Recall that a countable topological space is analytic if its topology,
viewed as a subspace of the Cantor cube 2ω, is analytic (i.e., a continuous
image of the irrationals); see [56].

While the precise definitions of sequential and sequential order are
somewhat lengthy, intuitively, a space is sequential if iteratively adding
limits of convergent subsequences eventually produces the closure of any
given set and the sequential order is the minimal “number of steps” re-
quired to produce the closure of any subset in the space in such manner.

Problem 1. Is it consistent with ZFC that every countable sequential
group is analytic?

The following is a stronger version of a question in [30] (see also [13]).
Recall that a group is called Boolean if it is a subgroup of some product
of Z2’s.

Problem 2. Is it consistent with ZFC that the countable Boolean group
does not have a Fréchet nonmetrizable topology while another countable
group does?

A similar question can be asked about countable sequential groups.

Problem 3. Is it consistent with ZFC that some countable abelian (or any
topologizable) group does not have a sequential topology with an interme-
diate (i.e., > 1 and < ω1) sequential order while another group does?

How strong is the interaction between the convergence and the group
structure in sequential groups?
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Problem 4. Given a “natural” set of ordinals A ⊂ ω1, is it consistent
with ZFC that a group with sequential order α exists if and only if α ∈ A?
Examples of A are finite ordinals, infinite ordinals, limit ordinals, {ω},
etc.

The combinatorics of pathological Fréchet group constructions and that
of compact Fréchet spaces seem to be very different; hence, the following
seemingly artificial question is asked.

Problem 5. Is it consistent with ZFC that there exist a Fréchet group
and a Fréchet compact space whose product is not Fréchet?

11. Gδ Partitions of Compact Spaces

Paul Szeptycki
York University; Toronto, Ontario, Canada

szeptyck@yorku.ca

Question 1. Does there exist a compact T2 space that can be partitioned
into more than continuum Gδ sets? Is there a bound on the size of such
partitions?

The question arose from investigations by Santi Spadaro and Paul J.
Szeptycki [53] into Arhangel’skii’s question whether 2ω is a bound on the
weak Lindelöf degree of a compact space in its Gδ topology. Indeed, they
show that if there is a compact space that can be partitioned into κ many
Gδ sets, then there is a compact space whose weak Lindelöf degree is κ+

in its Gδ-topology. Recall that Arhangel’skii did prove that no compact
T2 space can be partitioned into more than continuum closed Gδ’s.

12. Discrete Reflexivity in Some New Contexts

Vladimir V. Tkachuk
Universidad Autónoma Metropolitana; Mexico City, Mexico

vova@xanum.uam.mx

All spaces under consideration are assumed to be Tychonoff. If Z is
a space, then ∆Z = {(z, z) : z ∈ Z} ⊂ Z × Z is its diagonal. Given
a topological property P, a space X is called discretely P if the closure
of every discrete subspace of X has P. The property P is discretely
reflexive (in a class Q) if any space (from the class Q) which is discretely
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P must have the property P. V. V. Tkachuk proves in [54] that every
discretely compact space is compact; however, it is an open question of
A. V. Arhangel’skii and R. Z. Buzyakova [3] whether every discretely
Lindelöf space is Lindelöf. This question is open even for function spaces.

Problem 1 (Arhangel’skii and Buzyakova). Suppose that D is Lindelöf
for every discrete D ⊂ Cp(X). Must Cp(X) be Lindelöf?

If we cannot prove that every discretely Lindelöf function space is Lin-
delöf, then it would be progress to show that a discretely Lindelöf Cp(X)
has some property implied by Lindelöfness.

Problem 2 ([55]). Suppose that D is Lindelöf for every discrete D ⊂
Cp(X). Must Cp(X) be realcompact?

Discrete Lindelöfness of the complement of the diagonal in the square
is a much stronger property because if X is a space for which (X ×
X) \ ∆X is Lindelöf, then X is Lindelöf and has a weaker metrizable
topology. Therefore, weakening Lindelöfness of (X ×X) \∆X to discrete
Lindelöfness, we can also expect strong consequences. For example, it was
proved in [16] that if X is a countably compact space and (X ×X) \∆X

is discretely Lindelöf, then X is compact and metrizable. This motivates
the respective questions for function spaces asked in [55].

Problem 3. Given a space X, assume that (Cp(X) × Cp(X)) \∆Cp(X)

is discretely Lindelöf. Must Cp(X) be Lindelöf?

Problem 4. Given a space X, assume that (Cp(X) × Cp(X)) \∆Cp(X)

is discretely Lindelöf. Must X be separable?

Quite a few properties that fail to be discretely reflexive behave better
in compact spaces. For example, it was proved in [2] that a compact
space X must be first countable (Fréchet–Urysohn) if D is for any discrete
D ⊂ X. Since spaces Cp(X) have a rich algebraic structure compatible
with their topology, we can also hope that more properties might be
discretely reflexive in Cp(X).

Problem 5 ([55]). Suppose that D has countable pseudocharacter for
any discrete set D ⊂ Cp(X). Must the space Cp(X) have countable pseu-
docharacter?

Problem 6 ([55]). Suppose that D has the Fréchet–Urysohn property for
any discrete set D ⊂ Cp(X). Must the space Cp(X) have the Fréchet–
Urysohn property?

It is a classical theorem of Miroslaw Katětov [35] that a compact space
X is metrizable if X3 is hereditarily normal. Therefore, a positive answer
to the following question will be a strengthening of Katětov’s theorem.
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Problem 7 ([1]). Suppose that X is a compact space such that D is
hereditarily normal for any discrete D ⊂ X3. Must X be metrizable?

István Juhasz and Zoltán Szentmiklóssy establish in [33] that, for every
compact space X, there exists a discrete subspace D ⊂ X ×X such that
|D| = d(X). Dennis Burke and Tkachuk [17] extend this result to Lindelöf
Σ-spaces. They also establish in [17] that, for any Lindelöf p-space X,
there exists a discrete subset D ⊂ X×X such that ∆X ⊂ D; this implies,
in particular, that the projection of D to the first coordinate is dense in
X. An easy implication of the above-mentioned results is the existence,
for any Lindelöf Σ-space X, of a discrete set D ⊂ X3 such that the
projection of D onto the first coordinate is dense in X. However, the
following question remains open.

Problem 8 ([1]). Suppose that X is a σ-compact space. Does there exist a
discrete D ⊂ X×X such that the projection of D onto the first coordinate
is dense in X?
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