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A GENERALIZED DEFINITION
OF TOPOLOGICAL ENTROPY

LOUIS BLOCK, JAMES KEESLING, AND LENKA RUCKA

Abstract. Given an arbitrary (not necessarily continuous) func-
tion of a topological space to itself, we associate a non-negative
extended real number which we call the continuity entropy of the
function. In the case where the space is compact and the function is
continuous, the continuity entropy of the map is equal to the usual
topological entropy of the map. We show that some of the stan-
dard properties of topological entropy hold for continuity entropy,
but some do not. We show that for piecewise continuous piece-
wise monotone maps of the interval the continuity entropy agrees
with the entropy defined in Horseshoes and entropy for piecewise
continuous piecewise monotone maps by Michał Misiurewicz and
Krystina Ziemian Finally, we show that if f is a continuous map of
the interval to itself and g is any function of the interval to itself
which agrees with f at all but countably many points, then the
continuity entropies of f and g are equal.

1. Introduction

Topological entropy has become a useful tool for recognizing, quan-
tifying, and classifying the complicated dynamics of continuous maps.
Topological entropy was first defined in [1] for a continuous map of a
compact topological space to itself. In [9] and [10] an alternate definition
was given in the case of a uniformly continuous map of a metric space
to itself, and it was shown that this alternate definition coincides with
the definition given in [1] in the case of a continuous map of a compact
metric space to itself. Another idea which has been explored is to define
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