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SUSPENSIONS OF LOCALLY CONNECTED CURVES:
HOMOGENEITY DEGREE AND UNIQUENESS

DARIA MICHALIK

Abstract. The homogeneity degree of a space X is the number
of orbits for the action of the group of homeomorphisms of X onto
itself. We determine the homogeneity degree of the suspension over
a locally connected curve X not being a local dendrite in terms of
that of X. Using the main result of Alicia Santiago-Santos’s Degree
of homogeneity on suspensions (Topology Appl. 158 (2011), no.
16, 2125–2139) gives us a formula for the homogeneity degree of
the suspension over any locally connected curve X.

We also prove that the suspensions over locally connected curves
not being local dendrites X and Y are homeomorphic if and only
if X and Y are homeomorphic.

1. Introduction

A continuum is a nondegenerate compact connected metric space. A
curve is a one-dimensional continuum. An arc is a continuum homeo-
morphic to the interval I = [0, 1]. A simple closed curve is a continuum
homeomorphic to the unit circle S1.

Let X be a topological space. The cone of X is the quotient space
defined by

Cone(X) = X × I�{X × {1}},
and the suspension of X is the quotient space defined by

Sus(X) = X × I�{X × {0}, X × {1}}.
Let H(X) denote the group of homeomorphisms of X onto itself. An

orbit of X is an orbit under the action of H(X). Given a point x ∈ X,
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