http://topology.auburn.edu/tp/

http://topology.nipissingu.ca/tp/

On the Continuity Property of the Exact Homology Theories

by

LEONARD MDZINARISHVILI

Electronically published on January 28, 2020

This file contains only the first page of the paper. The full version of the paper is available to Topology Proceedings subscribers. See http://topology.auburn.edu/tp/subscriptioninfo.html for information.

Topology Proceedings

Web:	http://topology.auburn.edu/tp/
Mail:	Topology Proceedings
	Department of Mathematics & Statistics
	Auburn University, Alabama 36849, USA
E-mail:	topolog@auburn.edu
ISSN:	(Online) 2331-1290, (Print) 0146-4124
COPYRIGHT © by Topology Proceedings. All rights reserved.	

E-Published on January 28, 2020

ON THE CONTINUITY PROPERTY OF THE EXACT HOMOLOGY THEORIES

LEONARD MDZINARISHVILI

ABSTRACT. It is well known [Samuel Eilenberg and Norman Steenrod, Foundations of Algebraic Topology. Princeton, New Jersey: Princeton University Press, 1952] that on the category \mathcal{K}_c of compact pairs and continuous maps there is a continuity property of the partially exact homology [Foundations of Algebraic Topology, Definition 2.3.X]. Namely, if the compact pair (X, A) is an inverse limit of the compact pairs (X_α, A_α) , then the partially exact homology H_* of (X, A) is an inverse limit of homology groups of (X_α, A_α) ; i.e., there is an isomorphism

$$H_*(X, A) \xrightarrow{\sim} \lim H_*(X_\alpha, A_\alpha).$$

It has been shown that among all the partially exact theories on the category \mathcal{K}_C , the Čech theory is essentially the only one satisfying this continuity axiom [Foundations of Algebraic Topology, Theorem 3.1.X].

We define a continuity property of the exact homology theories on the category \mathcal{K}_C and prove that the homology theory on the category \mathcal{K}_C , satisfying all the Eilenberg–Steenrod axioms and the continuity property of the exact homology theories, exists.

Let \mathcal{K}_C be the category of compact pairs (X, A) and continuous maps; let H_* be an exact homology theory. Let $\{(X_\alpha, A_\alpha)\}$ be an inverse system of compact pairs (X_α, A_α) and $(X, A) = \lim_{\leftarrow} (X_\alpha, A_\alpha)$. The inverse system $\{(X_\alpha, A_\alpha)\}$ generates an inverse system $\{H_*(X_\alpha, A_\alpha)\}$ and the projection $\pi_\alpha : (X, A) \to (X_\alpha, A_\alpha)$ induces the homomorphism $\pi_{\alpha,*} : H_*(X, A) \to$

²⁰¹⁰ Mathematics Subject Classification. 55N40.

Key words and phrases. continuity property, exact homology theory, infinite exact sequence.

^{©2020} Topology Proceedings.

This file contains only the first page of the paper. The full version of the paper is available to Topology Proceedings subscribers. See http://topology.auburn.edu/tp/subscriptioninfo.html for information.