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MULTIPLE FACETS OF INVERSE CONTINUITY

SZYMON DOLECKI

Abstract. Inversion of various inclusions that characterize conti-
nuity in topological spaces results in numerous variants of quotient
and perfect maps. In the framework of convergences, the said in-
clusions are no longer equivalent, and each of them characterizes
continuity in a different concretely reflective subcategory of conver-
gences. On the other hand, it turns out that the mentioned vari-
ants of quotient and perfect maps are quotient and perfect maps
with respect to these subcategories. This perspective enables use of
convergence-theoretic tools in quests related to quotient and perfect
maps, considerably simplifying the traditional approach. Similar
techniques would be unconceivable in the framework of topologies.

Introduction

This paper is designed for a broad mathematical audience. Its purpose
is to show the utility of the convergence theory approach to classical
themes of general topology. Therefore, I focus on convergence-theoretic
methods rather than on detailed applications. For this reason, I shall
provide only a small number of examples, referring for more details to
classical books on general topology, for example, to [16] of R. Engelking,
and to research papers cited below.

It will be shown that the arguments deployed would be impossible
without a broader framework transcending that of topologies.

Continuity of maps between topological spaces can be characterized in
many ways, in particular, in terms of adherences of filters from various
classes, their images, and preimages.
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