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Abstract. For a coarse space (X, E), X] denotes the set of all
unbounded ultrafilters on X endowed with the parallelity relation:
p||q if there exists E ∈ E such that E[P ] ∈ q for each P ∈ p. If
(X, E) is finitary then there exists a group G of permutations of X
such that the coarse structure E has the base {{(x, gx) : x ∈ X,
g ∈ F} : F ∈ [G]<ω , id ∈ F}. We survey and analyze interplays
between (X, E), X] and the dynamical system (G,X]).

The dynamical Švarc-Milnor Theorem and Gromov Theorem arose at
the dawn of Geometric Group Theory. In both cases, a group or a pair of
groups act on some locally compact spaces, see [22, Chapter 1]. The
Gromov coupling criterion was transformed into the powerful tool in
coarse equivalences (see references in [23]), however some natural ques-
tions on the coarse equivalence of groups need more delicate combinatorial
technique, see [4].

In this paper, we describe and survey the dynamical approach to coarse
spaces originated in the algebra of the Stone-Čech compactification. We
identify the Stone-Čech compactification βG of a discrete group G with
the set of all ultrafilters on G. The left regular action G on G gives rise
to the action of G on βG by (g, p) 7→ gp, gp = {gP : P ∈ p}. In turn,
the dynamical system (G, βG) induces on βG the structure of a right
topological semigroup. The product pq of ultrafilters p, q is defined by
A ∈ pq if and only if {g ∈ G : g−1A ∈ q} ∈ p. The semigroup βG has
a very rich algebraic structure and plenty of combinatorial applications;
see nice paper [5], capital book [6] or booklet [9].
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