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SOME PROPERTIES OF CARTESIAN PRODUCTS
AND STONE-ČECH COMPACTIFICATIONS

NEIL HINDMAN AND DONA STRAUSS

Abstract. Given a discrete space S, the Stone-Čech compactifi-
cation βS of S consists of all of the ultrafilters on S. If p ∈ βS
and q ∈ βT , then the tensor product , p ⊗ q ∈ β(S × T ). If (S, ·)
is a semigroup and p, q ∈ βS, then p ⊗ q is intimately related to
the algebraic product p · q. We investigate tensor products in this
paper, showing among other things, that tensor products are topo-
logically rare. For example, S∗⊗T ∗ is nowhere dense in β(S×T ),
where S∗ = βS \ S.

We also investigate Cartesian products of Stone-Čech compact-
ifications, considering the question of whether, given semigroups
(S, ·) and (T, ·), (βS)u and (βT )v can be isomorphic for distinct
positive integers u and v. We obtain conditions guaranteeing that
the answer is “no” as well as some examples where the answer is
“yes”.

1. Introduction

The tensor product of two ultrafilters is a special case of the notion of
the sum of ultrafilters introduced by Frolík in paragraph 1.2 of [7].

Definition 1.1. Let S and T be discrete spaces, let p ∈ βS, and let
q ∈ βT . Then the tensor product of p and q is defined by

p⊗ q = {A ⊆ S × T : {x ∈ S : {y ∈ T : (x, y) ∈ A} ∈ q} ∈ p} .
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