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Abstract

In 1950, H. Seifert asked whether every non-singular R-action (flow) on
the 3-sphere has a periodic trajectory. The conjecture that the answer is
yes became known as the Seifert Conjecture. Seifert proved the conjecture
for perturbations of the flow parallel to the Hopf fibration. The Modified
Seifert Conjecture asserted the existence of a minimal set of topological
dimension ≤ 1.

Since a C 1 counterexample to the Seifert Conjecture given P.A.Schweitzer
in 1974, many other examples of aperiodic flows on S3 appeared in the
literature, all of which are based on a construction of a plug with peculiar
minimal sets. We are interested in the algebraic properties of the minimal
sets from the point of view of Borsuk’s Shape Theory and
Vietoris-Čech Homology. In particular, we will concentrate on
one-dimensional minimal sets obtained by the method of self-insertion.
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Vietoris-Čech Homology. In particular, we will concentrate on
one-dimensional minimal sets obtained by the method of self-insertion.

(Nipissing University) 2018 3 / 28



minute introduction to shape theory

Figure : sin 1
x -circle
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Figure : Vietoris ε-cycle
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Figure : Approximating circle representing a cycle

Geometric interpretation in Borsuk’s shape theory.

(Nipissing University) 2018 6 / 28



Shape

Karol Borsuk 1968 - 1969:
Denote by AR and ANR the classes of metric absolute retracts and
absolute neighborhood retracts, resp.
Let M,N,P ∈ AR; X ⊂ M, Y ⊂ N, and Z ⊂ P be compact.

Definition

A fundamental sequence from X to Y ,

f = {fk ,X ,Y }M,N

is a sequence of maps fk : M → N, k = 1, 2, . . ., such that for every
neighborhood U of Y in N, there is a neighborhood V of X in M such
that fk |V ' fk+1|V in U for almost all k .
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Composition of fundamental sequences is well-defined:

Definition

Let f = {fk ,X ,Y }M,N and g = {gk ,Y ,Z}N,P be fundamental sequences.
The composition g ◦ f is the fundamental sequence {gk ◦ fk ,X ,Z}M,P .

A map f : X → Y , generates a fundamental sequence

f = {fk ,X ,Y }M,N .

Usually, the considered absolute retracts are Rn, the Hilbert cube Q, or
the Hilbert space H.

Notation: f = {fk ,X ,Y } if M = N = P.
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Definition

Let f = {fk ,X ,Y }M,N and g = {gk ,X ,Y }M,N be fundamental sequences.
f is shape equivalent to g = {gk ,X ,Y }M,N (or shape homotopic),
notation f ' g , if for every neighborhood U of Y in N, there is a
neighborhood V of X in M such that fk |V ' gk |V in U for almost all k.
Equivalently, f ' g provided f1, g1, f2, g2, . . . is a fundamental sequence.

Any two fundamental sequences generated by the same map f : X → Y ,
f = {fk ,X ,Y }M,N and g = {gk ,X ,Y }M,N are shape homotopic.

Definition

A fundamental sequence generated by the identity idX is denoted by idX .
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Definition

Let f = {fk ,X ,Y }M,N and g = {gk ,Y ,X}N,M be fundamental sequences.
If g ◦ f ' idX and f ◦ g ' idY , then f is a shape equivalence. More
precisely, f is a shape equivalence if such g exists. Clearly, g is then a
shape equivalence as well.
If such f and g exists for some M and N, containing X and Y ,
respectively, then X and Y are shape equivalent (or have the same shape,
or X has the shape of Y ) and we write Sh(X )=Sh(Y ).

This setting allows to define shape homotopy groups (fundamental groups)
and other notions. Shape homology and cohomology groups are the
Vietoris-Čech groups.
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Shape Equivalence

Sh(X )=Sh(Y ) implies all Vietoris-Čech homology and cohomology
groups are equal.

Sh(X , x0)=Sh(Y , y0) implies all Borsuk (shape, fundamental)
homotopy groups are equal.

Example

The shape of a planar continuum depends only on the number of
complementary domains.

The Hawaiian Earring, the Cantor Hawaiian Earring C × S1/C × {1}, the
Sierpiński Carpet, all have the same shape.
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Movability - Borsuk

Definition

Let M ∈ ANR. A compact set F ⊂ M is movable in M provided

∀U∃V∀W∃H H : V × I → U

such that

1 H(x , 0) = x for all x ∈ V ,

2 H(V × {1}) ⊂W .

U, V , W are open neighborhoods of F in M; H is a homotopy.
We may assume that F ⊂W ⊂ V ⊂ U.
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Borsuk

Theorem (K. Borsuk 1968-1972)

If M and N are ANRs, F is a compact metric space, and i : F ↪→ M,
j : F ↪→ N are embeddings, then i(F ) is movable in M iff j(F ) is
movable in N.

A compact space F is movable if there exist a metric ANR M and an
embedding i : F ↪→ M such that i(F ) is movable in M.

Movability is shape invariant.

If X ⊂ R2, then X is movable.

Theorem (D.R. McMillan) If X ⊂ surface, then X is movable.(1974)

The Denjoy continuum D is movable. Sh(D)=Sh(S1 ∨ S1)
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One-dimensional continua

Theorem

(A. Trybulec, 1974)

If X and Y are one-dimensional metric continua, and f : X → Y is
continuous and onto, then X is movable implies Y is movable.

A movable one-dimensional continuum has the same shape as a
one-point union of countably many circles, a planar continuum.

A one-dimensional Peano continuum is movable. There are examples of
non-movable two-dimensional Peano continua (Borsuk).

The Menger Curve has the same shape as the Sierpiński Carpet.
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Seifert Conjecture in dimension three

Seifert Conjecture

A non-singular flow on S3 possesses a circular trajectory.

Modified Seifert Conjecture

A non-singular flow on S3 possesses a minimal set of topological
dimension one.

Definition

A minimal set is an non-empty, compact, invariant set that is minimal in
this respect.

Theorem (F. W. Wilson, 1966)

A non-singular flow on a manifold of dimension n ≥ 3 can be modified in a
C∞ fashion so that every minimal set is an (n − 2)-dimensional torus
S1 × · · · × S1.
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Counterexamples to the Seifert Conjecture

Denjoy minimal sets:

P.A. Schweitzer (1973) - C 1

J. Harrison (1984) – C 2+δ

G. Kuperberg (1996) - volume preserving, Hamiltonian on the line
bundle

V. Ginzburg, Başak Gürel (2003) - C 2 Hamiltonian on R4

Self-insertion constructions:

K.K. (1993) - C∞

G. Kuperberg and K.K. (1994) - Cω (Modified Seifert Conjecture);
minimal set of topological dimension two

G. Kuperberg (1994) - PL, continuous; minimal set of topological
dimension one
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Plug insertion
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or PL. An insertion alters the �ow locally, but the
geometry of the trajectories is changed globally.
Condition 2 gives good control over the con�gu-
ration of trajectories. In particular, if the plug is
aperiodic, the insertion does not create new peri-
odic trajectories.

Plugs were �rst de�ned by F. W. Wilson in [10]
and used to prove that every C ∞ closed n -mani-
fold of Euler characteristic zero admits a C ∞ dy-
namical system with �nitely many minimal sets;
each of the minimal sets is an (n − 2) -torus
S 1 × · · · × S 1 , every trajectory originates and lim-
its on one of these tori, and the �ow on each of
the tori is minimal. Starting with a nonsingular vec-
tor �eld, he inserted copies of a plug, which he con-
structed, to capture every orbit so that the only
minimal sets are those inside the plugs. Wilson’s
theorem resolves the Seifert Conjecture for spheres
of dimension higher than three, but it does not set-
tle the Modi�ed Seifert Conjecture: all minimal
sets are of codimension two. In dimension three
the theorem gives the existence of vector �elds on
closed manifolds with �nitely many periodic or-
bits. Wilson’s construction is valid in the C ω case,
although originally it was claimed only to be valid
for C ∞ .

Similar methods are used in [8] to demonstrate
the existence of a �ow on R 3 with uniformly
bounded orbits and to answer a question posed by
S. Ulam: If the diameter of the set of the iterations
of a point under a continuous map of a manifold
into itself is su�ciently small, does there always
exist a �xed point? The time 1 map of the dy-
namical system on R 3 answers Ulam’s question by
a counterexample.

Having only �nitely many compact trajectories,
one can break each one of them with an aperiodic
plug matching a segment of the orbit with an orbit
trapped in a plug; see Figure 3. This removes the
periodicity. The �rst aperiodic plug and the idea
of applying it to break a closed orbit are important
contributions due to Schweitzer [9].

It is worth mentioning that for plug insertion,
S 3 is a good representative of all orientable closed
3-manifolds. It is also the most intriguing. By the
Wallace-Lickorish theorem any closed orientable
3-manifold M can be obtained from any other
closed orientable 3-manifold by an integral surgery
on a �nite link of tori S 1 × D 2 . A surgery removes
a solid torus S 1 × D 2 from M and puts it back
with a twist. The nonorientable manifolds can be
treated in a similar fashion. A twisted plug is de-
�ned analogously to a plug with one change: Con-
dition 1 is relaxed on the side boundary (∂F ) × I
to assume only that P is tangent to the boundary.
Unlike an inserted plug, in which the trajectories
go straight up along the side boundary, a twisted
plug also has orbits going around the side bound-
ary, as in Figure 4. In [5] G. Kuperberg constructs
a C ω twisted plug and a volume-preserving C ∞

twisted plug, each with two periodic orbits. The
plugs are used for surgery compatible with a given
vector �eld. These methods yield an alternate
proof of Wilson’s theorem and similar results re-

Figure 3. Breaking an orbit.

Figure 4. A twisted plug.

Figure 5. A plug with two closed orbits.
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from the integration, is the additive property of
time.

A compact orbit is also called periodic, and it is
either a fixed point or a simple closed curve, a
closed orbit. If the orbit is not compact, then it is
a one-to-one image of R and its topological closure
is the union of orbits; i.e., it is invariant. A dy-
namical system, respectively a vector field, with no
periodic orbits is called aperiodic. For example, the
so-called “irrational flow” on the n -torus
S1 × · · ·× S1 , n ≥ 2, has every orbit dense in the
torus, and thus it is aperiodic. A nonempty com-
pact invariant set is minimal if it contains no non-
empty compact invariant proper subset. A minimal
set always exists: it may be a single point, a sim-
ple closed curve, or quite a large set. A dynamical
system is minimal if the only minimal set is the
whole underlying space.

The orbits of the vector field tangent to the
fibers of the Hopf fibration are the fibers them-
selves, and all are periodic. A small tilt of the vec-
tors can easily change the vector field so that there
is only one compact orbit. In 1950 H. Seifert proved
that if V is a C1 vector field on S3 and the angles
between the vectors of V and the circles of the
Hopf fibration are sufficiently small, then there is
at least one periodic orbit.

Seifert’s theorem produced a natural question
as to whether every dynamical system on S3 must
possess a compact orbit. An affirmative answer to
this question became known as the Seifert Con-
jecture, and it was believed until a truly beautiful
counterexample given in 1974 by P. A. Schweitzer

[9]. Schweitzer’s construction of an aperiodic dy-
namical system on S3 is based on the existence of
an aperiodic C1 vector field on the torus S1 × S1

that is not minimal, known as a Denjoy vector
field. There are two minimal sets in Schweitzer’s
vector field on S3: two copies of the Denjoy set,
each embedded in a C∞ punctured torus
(S1 × S1)−D2. It is known that such a vector field
cannot be C2. However, a clever modification by
J. Harrison [2] in 1988, not requiring that the min-
imal sets be embedded in a smooth surface, yields
a C2+δ counterexample to the Seifert Conjecture.
The method used by Harrison puts a natural re-
striction on the differentiability of her example—
it cannot be C3. Neither Schweitzer’s nor Harrison’s
examples resolve a stronger conjecture, the Mod-
ified Seifert Conjecture stated in [9] and [10], as-
serting that: Every dynamical system on S3 has a
minimal set of dimension1 one or zero. The di-
mension of the Denjoy minimal set equals one.

A different approach, explored in [7], launched
another series of aperiodic examples. As in the ex-
amples of Schweitzer and Harrison, a basic build-
ing element is a plug. In a rather intuitive de-
scription, a Cr plug P, r ≤ ∞, is a nonsingular
vector field on the Cartesian product of an (n− 1)-
dimensional compact connected manifold F and
the interval I = [0,1]. It is assumed that F × I can
be embedded in Rn so that all I-fibers {f}× I are
straight segments and are parallel. Thus when
n = 3, F can be any orientable compact surface
with nonempty boundary. It is also required that
1. In a neighborhood of the boundary ∂(F × I), P

is tangent to the fiber I.
2. The interior of F × I can be identified with a

chart U in an n-manifold furnished with a non-
singular vector field V , to replace V on U
with a vector field conjugate to P, in such a
way that the resulting vector field W on M sat-
isfies the following two conditions:

a. (Matched ends) If a segment A of a tra-
jectory of W is a subset of U and joins two
points on the boundary of U, then A replaces
a segment of a trajectory of V .

b. (Trapped orbit) At least one trajectory
of W enters U at some point and does not
leave U at a later time.

Variations of this definition yield other types of
plugs such as Cω (real analytic) or PL (piecewise
linear).

A dynamical system without fixed points is lo-
cally conjugate to a flow on Rn generated by a con-
stant nonzero vector field. As illustrated in Figure
2, a plug can replace V|U with a more complicated
vector field P. This procedure, called an insertion,
can be performed in any desired category: Cr , Cω,

1The dimension is the covering dimension or, equiva-
lently, the inductive dimension. It is different from the
Hausdorff dimension, which plays a significant role in the
differentiability restrictions in Harrison’s example.

Figure 2. An insertion.
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Wilson-type plug
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C∞ , Cω
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Figure : A smooth plug 1993

G. Kuperberg and K.K. (1994): Insertion yielding

Cω construction

a unique minimal set of topological dimension two
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Hurder-Rechtman

The dynamics of generic Kuperberg flows
Steven Hurder, Ana Rechtman
Astérisque 377 (2016), viii+250 pages

The unique minimal set

is not of the shape of a polyhedron

satisfies the Mittag-Leffler condition

generic: insertion formulas are polynomial of degree 2
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Mittag-Leffler

Definition

Let M ∈ ANR, F ⊂ M compact, W ,V ,U open sets containing F .

A compact set F ⊂ M satisfies the Mittag-Leffler condition in M provided
∀U∃V⊂U∀W⊂V

im{Ȟ1(W ,Z)→ Ȟ1(U,Z)} = im{Ȟ1(V ,Z)→ Ȟ1(U,Z)}

for the inclusion maps W ↪→ V ↪→ U.

Solenoids non-movable, not Mittag-Leffler

Case-Chamberlin continuum L non-movable, Mittag-Leffler

L = lim
←−

(S1 ∨ S1, fn), fn(a) = aba−1b−1, fn(b) = a2b2a−2b−2,

where a and b are the natural generators of π1(S1 ∨ S1).
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if such a construction is C1, then it does not pre-
serve measure. Figure 8 illustrates this phenome-
non. It shows the relation of the position of the or-
bits on the rectangular vertical cross-section of
Figure 5 to the points of reentry on the bottom
curved part. As the orbits approach the circular
orbit, indicated here by a large dot, the distance
between the reentering points gets smaller. For the
trajectory not to be trapped, it is necessary to skip
over the insertion, which would then need to be
very narrow and sharp, contradicting differentia-
bility.

The reentering trajectories bind the previously
periodic (and now broken) orbits in one huge, usu-
ally 2-dimensional, minimal set. Thus the main re-
sult of [6] is the following:

Theorem 2.There is a Cω3-dimensional plug with
exactly one minimal set of dimension two and with
no other minimal set.

Following Schweitzer, one can insert the plug in
any 3-manifold with a nonsingular vector field
with finitely many closed orbits. In fact, only one
plug weaving through the manifold is needed to
break all periodic orbits. W. P. Thurston pointed
out to the authors of [6] that because of the Mor-
rey-Grauert theorem stating that there is only one
real analytic structure on S3, the methods give a
Cωcounterexample to the Seifert Conjecture, in-
cluding the stronger modified version.

The examples of Schweitzer [9] and Harrison [2]
and the one just described all have natural gener-
alizations to higher dimensions. In particular, the
following holds (see [6]):

Theorem 3.If Mis a C∞, Cω, or PLclosed mani-
fold of dimension ≥3admitting a fixed-point-free
dynamical system in the same smoothness cate-
gory, then there exists an aperiodic dynamical sys-
tem on Min the same smoothness category that has
exactly one minimal set of codimension one and no
other minimal set.

With the just described methods it is more dif-
ficult to obtain an aperiodic plug with one mini-
mal set and that of dimension one. The only such
example is a PL plug described in [6]. The minimal

set is locally homeomorphic to a Denjoy set, but
globally it has a totally different topological struc-
ture; for example, it does not embed in a 2-
dimensional surface. There is also a similar PL
construction in dimension three with the minimal
set of dimension two obtained by breaking annuli
of trajectories instead of single orbits. The last gives
an interesting generalization in [6] for PL flows, i.e.,
directed 1-foliations, which by definition have no
fixed points.

Theorem 4.Let Mbe a closed PLmanifold of di-
mension n≥3, and let 1≤k≤n−1. A PL-directed
1-foliation of Mcan be modified in a PLfashion so
that there are no circular leaves and there is exactly
one k-dimensional minimal set and no other mini-
mal set.

The flexibility of the described self-insertions
allows the construction of aperiodic dynamical
systems with topologically diverse minimal sets.
The simple condition that a trajectory reenters at
a different cylinder does not impose many con-
straints. The self-insertions may be performed in
several places and will not destroy aperiodicity
provided the simple radius inequality condition of
[7] or some equivalent is met. Adjusting the
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Figure 8. A section of a self-insertion.
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sult of [6] is the following:

Theorem 2.There is a Cω3-dimensional plug with
exactly one minimal set of dimension two and with
no other minimal set.

Following Schweitzer, one can insert the plug in
any 3-manifold with a nonsingular vector field
with finitely many closed orbits. In fact, only one
plug weaving through the manifold is needed to
break all periodic orbits. W. P. Thurston pointed
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dynamical system in the same smoothness cate-
gory, then there exists an aperiodic dynamical sys-
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exactly one minimal set of codimension one and no
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With the just described methods it is more dif-
ficult to obtain an aperiodic plug with one mini-
mal set and that of dimension one. The only such
example is a PL plug described in [6]. The minimal

set is locally homeomorphic to a Denjoy set, but
globally it has a totally different topological struc-
ture; for example, it does not embed in a 2-
dimensional surface. There is also a similar PL
construction in dimension three with the minimal
set of dimension two obtained by breaking annuli
of trajectories instead of single orbits. The last gives
an interesting generalization in [6] for PL flows, i.e.,
directed 1-foliations, which by definition have no
fixed points.

Theorem 4.Let Mbe a closed PLmanifold of di-
mension n≥3, and let 1≤k≤n−1. A PL-directed
1-foliation of Mcan be modified in a PLfashion so
that there are no circular leaves and there is exactly
one k-dimensional minimal set and no other mini-
mal set.

The flexibility of the described self-insertions
allows the construction of aperiodic dynamical
systems with topologically diverse minimal sets.
The simple condition that a trajectory reenters at
a different cylinder does not impose many con-
straints. The self-insertions may be performed in
several places and will not destroy aperiodicity
provided the simple radius inequality condition of
[7] or some equivalent is met. Adjusting the
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Figure : Reeb component

Figure : Cantor Reeb

Controlling the reentry of trajectories to obtain a one-dimensional plug.
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Figure : Sharp C 0 insertion vs. C∞ insertion
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A piece-wise linear plug construction
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Figure : Controling piece-wise linear insertion.
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Open Problems

1 Are the minimal sets in the self-insertion construction movable?

2 Are the minimal sets in the self-insertion construction always
Mittag-Leffler?

3 Are there C 1 self-insertion constructions yielding one-dimensional
minimal sets?
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Thank you for listening!
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