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The Basics

A dynamical system is a space X together with a function f : X → X . We
study the behavior of f n : X → X as n→∞.

The most basic example of long term behavior are periodic points. A
point x ∈ X is periodic if there exists n such that f n(x) = x . The smallest
integer n satisfying this property is called the period of the periodic point.

Two dynamical systems f : X → X and g : Y → Y are said to be
topologically conjugate if there exists a homeomorphism h : X → Y such
that h ◦ f = g ◦ h.
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Motivation: Sharkovsky’s Theorem

Theorem (Sharkovsky)

Let f : R→ R be a continuous function. Consider the ordering:

3 >S 5 >S 7 . . .
2 · 3 >S 2 · 5 >S 2 · 7 . . .
. . .
2n · 3 >S 2n · 5 >S 2n · 7 . . .
. . . >S 22 >S 21 >S 1

If f has a periodic point of period p, then f has a periodic point of period
q for every p >S q in the above ordering.

What we would like to investigate is an analogue of this theorem for
discontinuous maps with ”reasonable” structure. We shall restrict our
attention to piecewise monotone maps which are ”unimodal”.
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Simplifying

Denote the set of ”unimodal” piecewise monotone maps by F .

We are interested only in the periodic orbits of these maps. Therefore, it
would be convenient if we had a simple family of ”representatives”.

We will approach this using kneading theory.
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Itineraries

For x ∈ J we define its itinerary I f (x) under the mapping f to be the
sequence I0(x)I1(x)I2(x) . . . , where

I0(x) =


R if x > c ,

C if x = c ,

L if x < c ,

(1)

and Ij(x) = I0(f j(x)). We adopt the convention that the itinerary
terminates if Ij(x) = C for some j .

We will call a sequence A of Rs, Ls, and C s admissible if it is either an
infinite sequence of Rs and Ls, or a finite (possibly empty) sequence of Rs
and Ls followed by a C .

Finite sequences A have length |A| and are even (odd) if the sequence
contains an even (odd) number of R’s.

The parity-lexicographical ordering on sequences A of R’s, L’s, and
C ’s so that for a, b ∈ [xb, yb], a < b if and only if I (a) < I (b).
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Kneading Sequences

The kneading sequence is typically defined to be the itinerary of the
critical value.

For discontinuous maps, we use itineraries for both possible critical
values.

Let f (c−) = limx→c− f (x) and f (c+) = limx→c+ f (x).

We will define the left kneading sequence of f to be I (f (c−)) and the
right kneading sequence of f to be I (f (c+)).

Note that in the continuous case the left and right kneading
sequences coincide (at the kneading sequence).

Kneading sequences determine orbits on a maps core.
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Two-sided Truncated Tent maps

Consider a two-sided truncated tent map.

0 1
2

1a b

We denote by T S the parameter space of all parameters ((a, b)), with
a ∈ [0, 12 ] and b ∈ [12 , 1]. Here we use notation ((a, b)) for the parameter to
avoid confusion with interval (a, b).
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A Simplification

Using Kneading Theory, we can prove the following:

Theorem

For every f ∈ F there exists ((a, b)) ∈ T S such that K−(Ta,b) = K−(f )
and K+(Ta,b) = K+(f ). In particular, I(f |J1) = I(Ta,b|J2), where J1 and
J2 are the cores of f and Ta,b, respectively.

Here I denotes the set of all itineraries for a given map.

Since we wish to study the periodic orbits of f ∈ F , it suffices instead to
study a map Ta,b which has the same kneading sequences as f .
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Sharkovsky: Getting a Geometric Understanding

Using a continuous truncated tent map, the Sharkovsky order >S can be
understood to be the order periods are lost as the map is truncated further.

0 1
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A Two-Parameter Analogue

The discontinuous analogue to this construction is to consider a two-sided
truncated tent map.

0 1
2

1a b
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Getting the Picture

A simple example shows that the Sharkovsky ordering >S immediately
falls apart when considering discontinuous maps.

0 1
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5
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Definition of a Peak

Since the Sharkovsky order does not help us, we need to understand
how periodic orbits force one another in this context.

Let Q be a periodic orbit under the full tent map T ,
xL = max{x ∈ Q | x < 1

2}, and xR = min{x ∈ Q | x > 1
2}.

The parameter ((xL, xR)) is called the peak associated to the periodic
orbit Q.

The peak acts as a threshold for the periodic orbit in the parameter
space T S.

David Cosper () Periodic Orbits of Piecewise Monotone Maps North Bay, May 25th, 2018



Peaks

((a, b))

((xL, xR))

The map Ta,b has a periodic orbit which corresponds to the peak ((xL, xR)).
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Peaks(continued)

There is a simple geometric relationship to understand when one periodic
orbit forces another.

Lemma

Let Q1 and Q2 be periodic orbits under T with peaks ((x1, y1)) and
((x2, y2)), respectively. Then Tx2,y2 has periodic orbit Q1 if and only if
x1 ≤ x2 and y1 ≥ y2.

This gives us the following type of picture:

((x2, y2))

((x1, y1))
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The Set of Peaks

This is an illustration of all peaks up to period 20. We denote the set of
peaks by P.
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