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Theorem

X compact metric space =⇒ ∃ f : C � X (onto).
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Proof.

U0 = {C} f0−→ V0 = {X}
↑ i0,1 ↑ j0,1

U1 = {U1,1, . . . ,U1,n1}
f1−→ V1 = {V1,1, . . . ,V1,n1}, mesh < 1

disjoint clopen cover closed cover
↑ i1,2 ↑ j1,2

U2 = U2,1 ∪ · · · ∪ U2,n1
f2−→ V2 = V2,1 ∪ · · · ∪ V2,n1 , mesh < 1/2

U2,i disjoint cover V2,i closed cover of V1,i

of U1,i by clopen sets
↑ i2,3 ↑ j2,3
. . . . . . . . . . . . . . . . . .

C ≈ lim←−(Ui , ij ,k)
f̃=(f0,f1,... )−→ V∞ = lim←−(Vi , ij ,k)

Define ∼ on V∞ by (x0, x1, . . . ) ∼ (y0, y1, . . . ) iff xi ∩ yi 6= ∅ for all i

π : V∞ → V∞/ ∼ ≈ X f = π ◦ f̃
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Cell structures are inverse systems of discrete spaces with combinatorial
“nearness” relations.
Natural quotients (induced by the nearness relations) of the inverse limits
yield topological spaces.
“Maps” between cell structures yield mappings between the corresponding
quotient spaces.
Freudenthal (1937). Every compact metric space X admits a polyhedral
inverse sequence with surjective bonding maps whose inverse limit is X .
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Definition

Let Σ be a class of compact, connected polyhedra. Then the class [Σ] of
Σ− like continua consists of all continua X such that there exist
continuous mappings of X with arbitrarily small fibers onto some members
of Σ.

Let (Σ) be class of continua X such that X ≈ lim←−(Pn, pα,α′) where
Pα ∈ Σ and pα,α′ are continuous surjections.

Note: Σ ⊂ (Σ) ⊂ [Σ].
Mardesic-Segal (1963). Let Σ be a class of compact, connected
polyhedra.

metric ∩[Σ] = metric ∩(Σ)
eg.

1) Σ = {[0, 1]}, sin−1/x curve is arc-like i.e. sin−1/x curve ∈ [Σ].

2) Σ = {connected, finite, polyhedra of dim ≤ n}. Then
metric ∩[Σ] = {metric continua of dim ≤ n}.

3) Pasynkov, Mardesic (1959) - non-metric case problems - dim
∃ X non-metric, X ∈ [{[0, 1]}] but X /∈ ({[0, 1]}).
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Mardesic (1963). Let Σ be a class of compact, connected polyhedra.
[Σ] = class of lim←−(Xα, pα,α′)
where Xα are metric Σ-like continua, dim(Xα) ≤ dim(X ) and all pα,α′ are
continuous surjections.

Corollary

Every continuum X in [Σ] is the limit of a double iterated inverse system
of polyhedra in Σ with dim ≤ dim(X ).
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For mappings inverse limits are more problematic.
Mioduszewski (1963).
If X ,Y metric compacta and f : X = lim←−(Pi , pi ,j) −→ Y = lim←−(Qi , qi ,j)
then for each sequence {εi} of positive numbers εi → 0 there exists

Pm1

pm1,m2←−−−− Pm2

pm2,m3←−−−− Pm3 ←−−−− . . . ←−−−− Pmk

pmk ,mk+1←−−−−− . . .

f1

y f2

y f3

y . . . fk

y . . .

Qn1

qn1,n2←−−−− Qn2

qn2,n3←−−−− Qn3 ←−−−− . . . ←−−−− Qnk

qnk ,nk+1←−−−−− . . .

where m1 < m2 < m3 < . . . , n1 < n2 < n3 < . . .
and each diagram

Pmk
←−−−− Pmry y

Qni ←−−−− Qnk ←−−−− Qnr

is εk commutative for i < k < r .
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Mardesic (1963). Let Σ and J be classes of connected polyhedra. Given
X ∈ [Σ] , Y ∈ [J] and f : X → Y a continuous surjection, then there exist
inverse systems X ′ = lim←−(Xα, pα,α′) and Y ′ = lim←−(Yβ, pβ,β′) of metric
continua in [Σ] (resp. [J]) with surjective bonding maps and
homeomorphisms h and k so

X
f−→ Y

≈ h ↓ ↪→ ≈ k ↓
X ′ = lim←−(Xα, pα,α′)

fβ−→ Y ′ = lim←−(Yβ, pβ,β′)

Note : Xα and Yβ can not be taken to be polyhedra even if X and Y are
metric.
Mardesic (1981). Resolutions - inverse systems with additional
conditions to study noncompact cases.
Mardesic - Watanabe (1989). Approximate inverse systems and
approximate resolutions to obtain rather arbitrary spaces and mappings
and filling in the deficiencies indicated above.
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Definition

Graph is ordered pair (G , r).

G is discrete set and r is reflexive and symmetric relation on G .

Cells are points of G .

a, b are adjacent if (a, b) ∈ r .

st(a) = {b ∈ G | (a, b) ∈ r}.
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Let {(Gi , ri ) | i = 1, 2, . . . } be graphs and
gi ,j : Gj → Gi be functions for j ≥ i satisfying

i) gi ,i = identity on Gi

ii) gi ,k = gi ,j ◦ gj ,k for i < j < k and

iii) (a, b) ∈ ri+1 =⇒ (gi ,i+1(a), gi ,i+1(b)) ∈ ri

G1
g1,2←−−−− G2

g2,3←−−−− G3
g3,4←−−−− . . .

If a ∈ Gi , say deg(a) = i .
Let Π = ΠGi topological product.
Π is complete, 0-dimensional, metric space.
G∞ = lim←−(Gi , gi ,j).
If x = (x(1), x(2), . . . ) ∈ Π then x ∈ G∞ iff gi ,i+1(x(i + 1)) = x(i) for
each i .
G∞ is set of threads.
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Let gi : G∞ → Gi be ith coordinate projection.
If a ∈ Gi let < a >= {x ∈ G∞ | x(i) = a} = g−1i (a).
{< x(i) > : x ∈ G∞, i = 1, 2, . . . } is basis of open and closed sets for G∞.

Proposition

G∞ is closed in Π hence G∞ is topologically complete 0-dimensional
metric space eg. if each Gi is countable, G∞ is closed subset of irrationals.

Definition

Set x ∼ y in G∞ if (x(i), y(i)) ∈ ri for each i .
∼ is reflexive and symmetric relation on G∞.

Proposition

∼ is closed in G∞ × G∞ .

Proof.

∼=
⋂

Ri where Ri = {(x , y) ∈ G∞ × G∞ | (x(i), y(i)) ∈ ri}.
Ri is closed since ri is closed in discrete space Gi × Gi .
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Definition

Cells a ∈ Gm and b ∈ Gn are close if (gk,m(a), gk,n(b)) ∈ rk for
k = min{m, n}.
Cauchy Sequence is a sequence of cells {u(j)} in ∪Gi such that

iv) limdeg(u(j)) =∞ and

v) u(i) and u(j) are close for all i and j sufficiently large.

Cauchy sequence {u(i)} converges to thread x ∈ G∞ if
x(i) and u(j) are close for all i and sufficiently large j .

Note. A Cauchy sequence may converge to different threads.
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Definition

A cell structure is an inverse sequence of graphs satisfying

vi) ∀ thread x ∈ G∞, ∀i , ∃j ≥ i s.t. gi ,j(st
2
rj

(x(j))) ⊂ strj (x(i))

vii) ∀ thread x , ∀i , ∃j ≥ i s.t gi ,j(strj(x(j))) is finite.

viii) each Cauchy sequence of cells converges

eg. Gi = {1, 2, . . . }, ri = ∆ ∪ {(k , l) | k , l ≥ i} and gi ,j = identity.

{((Gi , ri ), gi ,j)} satisfies vi) and vii) but not viii).
x = {x(i) = i} is Cauchy but does not converge.
Note. In general if vi) and vii) are satisfied and each set of mutually
adjacent cells is finite then viii) is satisfied.

Let (∗) = {((Gi , ri ), gi ,j)} be a cell structure. ∼ is transitive by vi).
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Definition

For x ∈ G∞ let [x ] = {y ∈ G∞ | x ∼ y}. By vii) [x ] is compact. Define
π : G∞ → G∞/ ∼= G ∗. π is perfect mapping.
G ∗, the space determined by the cell structure, is topologically complete
metrizable space.

Proposition

If (∗) is cell structure then
{G ∗ \ π(Gi\ < A >) | A ⊂ Gi , i = 1, 2, . . . } is basis for topology on G ∗.

eg. Gi = {p10−i | p integer }
(x , y) ∈ ri iff |x − y | ≤ 10−i .
gi ,j an order preserving retraction.
G∗ ≡ R.
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Theorem (1)

Each complete metric space is homeomorphic to a space determined by
some cell structure.

Proof.

X paracompact −→ ∃{Ui} sequence of locally finite open covers with
mesh Ui < 1/i and Ui+1 closed star refines Ui .

Define gi ,i+1 : Ui+1 → Ui by gi ,i+1(U) ⊃ cl(st(U,Ui+1)).
Define ri = {U × V | U,V ∈ Ui and U ∩ V 6= ∅}.
{((Ui , ri ), gi ,j)} is a cell structure.
vi) follows from closed star refinement of Ui+1 in Ui .
vii) is local finiteness of covers
viii) if {u(i)} is Cauchy sequence in

⋃
Ui , most pairs (u(i), u(j)) intersect

so form a Cauchy sequence in X converging to a point x in X . Choose
inductively v(i) in Ui so x ∈ v(i) and v = (v(1), v(2), . . . ) ⊂ G∞. Then
{u(i)} converges to v .
Define ϕ : U∗ → X by ϕ([x ]) = ∩x(i).
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Cell maps. Let

∗) G0
g0,1←−−−− G1

g1,2←−−−− G2 . . .

∗′) H0
h0,1←−−−− H1

h1,2←−−−− H2 . . .

be cell structures where G0 and H0 are singletons and where ri and r ′i are
the symmetric and reflexive relations on G and H respectively. Let π
(resp. π′) be the quotient maps of G∞ onto G ∗ (resp. H∞ onto H∗).
A function f :

⋃
Gi →

⋃
Hi is called a cell map of *) to *’) if f takes

close cells to close cells and Cauchy sequences to Cauchy sequences.

Proposition

The composition of cell maps is a cell map.
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Theorem (2)

Let f :
⋃

Gi →
⋃

Hi be a cell map of cell structure *) to cell structure *’).
Then f induces a continuous function f ∗ : G ∗ → H∗ defined as follows.
For x, a thread in G∞ f ∗(π(x)) = π

′
(y) where y is a thread in H∞ such

that f (x) converges to y.

Proof.

By applying vi) twice get f ∗ is well defined. Continuity proved by
contradiction using : (Error estimation). If a ∈ Gi then
f ∗(π(< a >)) ⊂ π′

(str ′j (f (a))) where j = deg(f (a))
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Theorem (3)

Let (X , d) and (Y , ρ) be complete metric spaces. Let {Ui} and {Vi}
sequences of locally finite open covers of X and Y respectively such that
mesh(Ui ) < 1/i , mesh(Vi ) < 1/i , Ui+1 closed star refines Ui and Vi+1

closed star refines Vi for each i and U0 = {X} and V0 = {Y }. Then each
continuous function F : X → Y is induced by a cell map of

⋃
Ui to

⋃
Vi .

Proof.

As in proof of Theorem 1 the sequences of covers {Ui} and {Vi} define
cell structures U and V respectively. Let F : X → Y be a continuous
function. Define a cell map f :

⋃
Ui →

⋃
Vi by setting for U ∈ Ui ,

f (U) ∈ Vi such that F (st3ri (U)) ⊂ f (U) where j is as large as possible if
such j exists otherwise choose any j > i . If we identify U∗ with X and V∗
with Y then f ∗ = F .
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Some classes of spaces. Let {((Gi , ri ), gi ,j)} be a cell structure.

1) If each ri = ∆ then G ∗ yield all topologically complete 0-dimensional
metric spaces.

2) If graphs Gi are finite then G ∗ yield all compact metric spaces.

3) If graphs Gi are finite and connected then G ∗ yield all metric continua.

4) If all Gi are finite trees then G ∗ yield all metric treelike continua.

5) If all Gi have each mutually adjacent set of cells of cardinality ≤ n + 1
then G ∗ yield all at most n-dimensional complete metric spaces.

Proof of 5).

If each set of mutually adjacent cells in each Gi has cardinality ≤ n + 1
then card([x]) ≤ n + 1 so by Hurewicz theorem dim(G ∗) ≤ n. If
dim(X ) ≤ n then by Ostrand theorem there exist open covers
Ui = Vi ,1 ∪ · · · ∪ Vi ,n+1 of mesh < 1/i such that each Vi ,j is discrete.
Hence, in each Ui each collection of mutually adjacent elements has
cardinality ≤ n + 1.
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THANK YOU
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