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The fundamental group

The fundamental group π1(X , x0) of a Peano continuum X , x0 ∈ X is either

finitely presented (when X has a universal covering)
I or uncountable (when X does not have a universal covering)

Motivation/Application:
I Distinguish homotopy types
I Provides new direction for combinatorial theory of infinitely generated groups, i.e.

slender/n-slender/n-cotorsion free groups (Eda, Fischer)
I Natural topologies on homotopical invariants provide (wild) geometric models for

objects in topological algebra.
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The Hawaiian earringH

The homomorphisms π1(H,0)→ π1
(∨n

i=1 S1,0
)

= F(x1, ..., xn) induce a canonical
homomorphism

Ψ : π1(H,0)→ lim
←−

n
F(x1, ..., xn)

Theorem (Griffiths, Morgan, Morrison): ker Ψ = 1 so Ψ is injective. An element in
π1(H,0) = Im(Ψ) is a sequence (w1,w2, ...) where wn ∈ F(x1, ..., xn) and for every
fixed generator xi the number of times xi appears in wn is eventually constant.
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The Čech expansion
Choose a finite open cover Un of X consisting of path connected open balls U with
diam(U) < 1

n such that Un+1 < Un (refinement).

Let Xn = N(Un) be the nerve of Un.

Refinement gives an inverse sequence of polyhedra

· · · // Xn+1 pn+1,n
// Xn pn,n−1

// · · · // X2 p2,1
// X1
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The fundamental pro-group

The fundamental pro-group is the inverse sequence (π1(Xn , xn), (pn+1,n)∗) of
finitely generated groups.

The first shape homotopy group is π̌1(X , x0) = lim
←−

(π1(Xn , xn), (pn+1,n)∗).

Using partions of unity, construct canonical maps pn : X → Xn such that
pn+1,n ◦ pn+1 ' pn

π1(X , x0)

(pn )∗

yy
(p2)∗

%%

(p1)∗

**
· · ·

(pn+1,n )∗

// π1(Xn , xn) // · · · // π1(X2 , x2)
(p2,1)∗

// π1(X1 , x1)

The first shape homomorphism is the canonical homomorphism
Ψ : π1(X , x0)→ π̌1(X , x0).

If ker Ψ = 1, we say X is π1-shape injective. e.g. 1-dimensional, planar Peano
continua.
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The quasitopological fundamental group

The quasitopological fundamental group πqtop
1 (X , x0) is the usual fundamental

group endowed with the quotient topology w.r.t. Ω(X , x0)→ π1(X , x0),
α→ [α].
I Discrete iff X admits a universal covering (Fabel)

I πqtop
1 (X , x0) can fail to be a topological group, e.g. H (Fabel).

I πqtop
1 (X , x0) is a quasitopological group.

I A necessary intermediate for a group topology on π1(X , x0) which has
application to the general theory of topological groups, e.g. Every open subgroup
of a free topological group is free topological (B).
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Topologizing π1

Guiding principle: If αn → α in Ω(X , x0), then [αn]→ [α] in πqtop
1 (X , x0).
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Open subgroups and invariant separation

We consider separation axioms and other separation properties.

Definition: A space A is totally separated if whenever a , b, there is a
clopen set U ⊂ A with a ∈ U and b < U.

Definition: A quasitopological group G is invariantly separated if whenever
g , h, there is an open normal subgroup N ⊂ G such that gN , hN.

Remark: G is invariantly separated⇔
⋂

N�G open

N = 1.

invariantly separated⇒ totally separated⇒ Hausdorff
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Comparing the approaches

1. Shape theory Ψ : π1(X , x0)→ π̌1(X , x0),

2. Topological separation in πqtop
1 (X , x0).

Question: How much of π1(X , x0) does each method retain (or
forget)?
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Spanier groups

Definition:

The Spanier group of X with respect to Un is
the normal subgroup

πsp(Un , x0) = 〈[α · γ · α−]|Im(γ) ⊂ U,U ∈ Un〉.

Remark: πsp(Un+1, x0) ⊂ πsp(Un , x0), n ≥ 1

The Spanier group of X is

πsp(X , x0) =
⋂
n≥1

πsp(Un , x0).
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Spanier groups

Utility: Spanier groups provide a way to determine when (classical) covering maps
exist.

Theorem (Spanier): Given H ≤ π1(X , x0),

there is a covering map
p : Y → X , p(y0) = x0

such that p∗(π1(Y , y0)) = H

ks +3 πsp(Un , x0) ⊆ H for some n ≥ 1

Corollary: πsp(X , x0) consists precisely of the homotopy classes [α] ∈ π1(X , x0) for
which α lifts to a loop for every covering p : (Y , y0)→ (X , x0), i.e.

πsp(X , x0) =
⋂
n≥1

πsp(Un , x0) =
⋂

p:(Y ,y0)→(X ,x0) covering

p∗(π1(Y , y0))
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Spanier groups

Utility: Spanier groups provide a way to determine when (classical) covering maps
exist.

Theorem (Spanier): Given H ≤ π1(X , x0),

there is a covering map
p : Y → X , p(y0) = x0

such that p∗(π1(Y , y0)) = H

ks +3 πsp(Un , x0) ⊆ H for some n ≥ 1

Corollary: πsp(X , x0) consists precisely of the homotopy classes [α] ∈ π1(X , x0) for
which α lifts to a loop for every covering p : (Y , y0)→ (X , x0), i.e.

πsp(X , x0) =
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Thick Spanier groups

Definition: The thick Spanier group of X with respect to Un is the normal subgroup

Πsp(Un , x0) = 〈[α · γ1 · γ2 · α
−]|Im(γi) ⊂ Ui ,Ui ∈ Un , i = 1,2〉.

Note πsp(Un , x0) ⊆ Πsp(Un , x0)

Πsp(Um , x0) ⊆ πsp(Un , x0) for large enough
m = m(n) ≥ n by paracompactness

Remark: πsp(X , x0) =
⋂
n≥1

Πsp(Un , x0)
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Thick Spanier groups

Theorem (B, Fabel): There is a level short exact sequence

1 // Πsp(Un, x0) // π1(X , x0)
(pn)∗
// π1(Xn, xn) // 1

Applying lim
←−

n

we obtain

1 // πsp(X , x0) // π1(X , x0)
Ψ // π̌1(X , x0)

In particular,

ker Ψ = πsp(X , x0),

π̌1(X , x0) = lim
←−

regular p

coker(p∗ : π1(Y , y0)→ π1(X , x0)).
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Comparison

Lemma: Each of the collections

1. {πsp(Un , x0)|n ≥ 1},

2. {Πsp(Un , x0)|n ≥ 1},

3. {N � πqtop
1 (X , x0)|N open}

is cofinal in the other two (when directed by inclusion).

Theorem: If X is a Peano continuum, then

ker Ψ = πsp(X , x0) =
⋂

N�πqtop
1 (X ,x0) open

N.

Corollary: If X is a Peano continuum, then X is π1-shape injective⇔ πqtop
1 (X , x0) is

invariantly separated.
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Conclusion

The data of the fundamental group of a Peano continuum X retain by each of

1. the covering spaces of X ,

2. the shape of X ,

3. open normal subgroups of πqtop
1 (X , x0).

is precisely the same.

1. and 2. are exhausted but the topology of πqtop
1 (X , x0) is rarely generated by

open normal subgroups.
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Other data retained by πqtop
1 (X , x0)

Separation properties

πqtop
1 (X , x0) Interpretation

Invariantly separated π1-shape injective
Totally separated Ω(X , x0) is π0-shape injective

Ψ0 : πqtop
1 (X , x0) = π0(Ω(X , x0))→ π̌0(Ω(X , x0))

is injective
0-dimensional Ψ0 is an embedding

T3 (T4) ?
T2 ?

T0 (T1) Homotopically path-Hausdorff

Jeremy Brazas The quasitopological fundamental group and the first shape map



The fundamental group of a Peano continuum
The first shape homomorphism

The quasitopological fundamental group
Comparing the approaches

Other data retained by πqtop
1 (X , x0)

Separation properties

πqtop
1 (X , x0) Interpretation

Invariantly separated π1-shape injective
Totally separated Ω(X , x0) is π0-shape injective

Ψ0 : πqtop
1 (X , x0) = π0(Ω(X , x0))→ π̌0(Ω(X , x0))

is injective
0-dimensional Ψ0 is an embedding

T3 (T4) ?
T2 ?

T0 (T1) Homotopically path-Hausdorff

Jeremy Brazas The quasitopological fundamental group and the first shape map



The fundamental group of a Peano continuum
The first shape homomorphism

The quasitopological fundamental group
Comparing the approaches

Other data retained by πqtop
1 (X , x0)

Separation properties

πqtop
1 (X , x0) Interpretation

Invariantly separated π1-shape injective
Totally separated Ω(X , x0) is π0-shape injective

Ψ0 : πqtop
1 (X , x0) = π0(Ω(X , x0))→ π̌0(Ω(X , x0))

is injective
0-dimensional Ψ0 is an embedding

T3 (T4) ?
T2 ?

T1 (T0) Homotopically path-Hausdorff

Jeremy Brazas The quasitopological fundamental group and the first shape map



The fundamental group of a Peano continuum
The first shape homomorphism

The quasitopological fundamental group
Comparing the approaches

Example in cylindrical coordinates

The topology of πqtop
1 (X , x0) can topologically distinguish homotopy classes

which are indistinguishable using shape/coverings.
Example (Conner, Meilstrup, Repovš, Zastrow, Željko):

1. C = {0} × {0} × [−1,1] is the core component,

2. S = {(r , θ, z)|z = sin(1/r),0 < r < 1} is the surface component.

3. Pick a countable discrete set D ⊂ S such that D = D ∪ C

4. For each d = (r , θ, z) ∈ D, let Ad = [0, r]× {θ} × {z} be the horizontal line
connecting C to d.

5. S = C ∪ S ∪
⋃

d∈D Ad is a Peano continuum such that ker Ψ , 1 but
πqtop

1 (X , x0) is T1 (Fischer, Repovš, Virk, Zastrow)&(B, Fabel)
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Open problems

Problem 1: If X is a Peano continuum and πqtop
1 (X , x0) is T2, must

πqtop
1 (X , x0) be invariantly separated (i.e. X π1-shape injective)?

Problem 2: If X is a Peano continuum and πqtop
1 (X , x0) is T1, must

πqtop
1 (X , x0) be T4 (equivalently T3)?

Thank you!
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