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Basic Notions: Complex Dynamics

In Complex Dynamics, we consider the behavior of points under
iteration of a holomorphic function.

In this setting, f : Ĉ→ Ĉ will be a rational map.

Definitions
For a point z ∈ Ĉ, the sequence (z, f (z), f 2(z), . . . ) is called the
orbit of z under f .
If z = f n(z) for some n, with n minimal, then we say z is periodic,
with period n.
In this case, the complex number λ = (f n)′(z) is called the
multiplier of z.
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Julia and Fatou Sets

For a periodic point z, we say z is:

attracting if |λ| < 1
superattracting if λ = 0
repelling if |λ| > 1
indifferent if |λ| = 1

This gives a natural partition of the Riemann sphere:

The Julia set, J(f ), is the closure of the set of repelling periodic
points.

Dynamics of f on the Julia set are "chaotic."

The Fatou set is the complement of the Julia set.

Dynamics of f on the Fatou set are "stable."
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Examples: Quadratic Polynomials

f (z) = z2

"The Unit Circle"
f (z) = z2 − 1
"The Basilica"

The Julia set is the boundary between the black and orange regions.
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Introduction: Perturbed Polynomials

We consider the singularly perturbed polynomial map Fλ:

Fλ(z) = zn +
λ

zd

Usually n,d ≥ 2.

Often (but not always) we take n = d for added symmetry.

For λ = 0 this map is the complex polynomial z 7→ zn.

When λ 6= 0 we have replaced the superattracting fixed point at the
origin with a pole.
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Motivation

Why study these maps?

Allows us to study rational maps of arbitrarily high degree. Many
important features in the case n = d = 3, e.g., persist in all higher
degrees.

As λ→ 0, we approach the boundary of Ratn+d , the space of
rational maps of degree n + d . The structure of these spaces is a
very active area of research.

Symmetries always allow us to study a natural one parameter
family in any degree. There is always a single "free" critical orbit.

Interesting dynamical behavior and topological features.
Sierpiński curve Julia sets are extremely common, for example.
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Sierpiński curve Julia sets are extremely common, for example.

Daniel Cuzzocreo ( Boston University) Small Perturbations of zn July 24, 2013 7



Motivation

Why study these maps?

Allows us to study rational maps of arbitrarily high degree. Many
important features in the case n = d = 3, e.g., persist in all higher
degrees.

As λ→ 0, we approach the boundary of Ratn+d , the space of
rational maps of degree n + d . The structure of these spaces is a
very active area of research.

Symmetries always allow us to study a natural one parameter
family in any degree. There is always a single "free" critical orbit.

Interesting dynamical behavior and topological features.
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Preliminaries

For this talk, we are interested in the case where |λ| is small.

The dynamics here are well understood when n and d are not both 2,
but much more complicated when n = d = 2.

For simplicity, we’ll assume n = d , so that our map is

Fλ(z) = zn +
λ

zn , n ≥ 2

∞ is always a superattracting fixed point.

Only pole is at 0, which is also a critical point.

2n other critical points lie at 2n
√
λ.

These map to two critical values at ±2
√
λ
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Preliminaries

We denote the immediate basin of∞ by Bλ, and the connected
component of the basin of∞ which contains 0 by Tλ (the "trap door").
These sets may coincide.
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The Escape Trichotomy

The behavior of the critical points determines the topology of the Julia
set of Fλ:

The Escape Trichotomy (Devaney, Look, Uminsky; 2005)

Let vλ = Fλ(cλ) be a critical value, and suppose F k
λ (cλ)→∞. Then:

1 if vλ lies in Bλ, then J(Fλ) is a Cantor set;
2 if vλ lies in Tλ 6= Bλ, then J(Fλ) is a Cantor set of concentric

simple closed curves surrounding the origin;
3 in all other cases, J(Fλ) is a connected set.

In particular, if F j
λ(vλ) ∈ Tλ 6= Bλ for some j ≥ 1, then J(Fλ) is a

Sierpiński curve (i.e., homeomorphic to the Sierpiński carpet). Sets
of λ values where this occurs are called Sierpiński holes.
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Sierpiński curve (i.e., homeomorphic to the Sierpiński carpet). Sets
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Example: Case 1, n=3

A Cantor set.
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Example: Case 2, n=3

A Cantor set of simple closed curves.
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Example: Case 3, n=3

A Sierpiński curve.
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Small perturbations: n ≥ 3

What happens when the parameter is very small?

The answer is very different for the cases n = 2 and n ≥ 3.

When n ≥ 3, there exists a punctured neighborhood of λ = 0 for which
Case 2 occurs, (the McMullen domain). The critical values both lie in
the trap door and the Julia set is a Cantor set of simple closed curves.
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Small perturbations: n ≥ 3

Moreover, as a function of λ, the width of the largest annulus in the
Fatou set is bounded away from zero (Devaney, Garijo; 2006).

n = 3, λ ≈ −0.005 n = 3, λ ≈ 10−6

There is always at least one "thick" annulus in the Fatou set as λ→ 0.
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Small perturbations: n=2

When n = 2, no McMullen domain exists. Why?

If the critical values are to lie
in the trap door, the
Riemann-Hurwitz formula
requires that the preimage of
the trap door must be a
single annulus X mapped
2n-to-1 onto Tλ.

The remaining annuli A1 and
A2 are each mapped n-to-1
onto A = A1 ∪ X ∪ A2.
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Small perturbations: n=2

When n = 2, no McMullen domain exists. Why?

An n-to-1 covering map
expands the modulus of an
annulus by a factor of n, so
when n = 2 we have
1
2mod A = mod A1 = mod A2.

But mod A =
mod A1 + mod X + mod A2,
so there is no room for X .
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Small perturbations, n=2

Since we have no McMullen domain, for small λ, J(Fλ) is connected by
the Escape Trichotomy.

Yet there are uncountably many conjugacy classes of maps in any
neighborhood of λ = 0.

Moreover, we have the following theorem:

Theorem (Devaney, Garijo; 2006)
As λ approaches zero, the Julia set for the map

Fλ(z) = z2 +
λ

z2

converges to the closed unit disk in the Hausdorff metric.
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Small perturbations, n=2

As λ gets small, bounded components of the Fatou set shrink.
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Small perturbations, n=2

Proof Idea

If the conclusion fails to hold, then for all ε sufficiently small, there
exists a sequence λj converging to zero, and a corresponding
sequence zj in the closed disk such that Bε(zj) lies in the Fatou set of
Fλj for all j .

By compactness, there is a subsequence of the zj converging to a
point z∗ in D, so we may assume wlog that Bε(z∗) is in the Fatou set of
Fλj for all j .

Since λj → 0, Fλj ≈ z2 for large j , so for large k , F k
λj

wraps Bε(z∗)
around the origin, disconnecting the Julia set by forward invariance.
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Parameter space, n=2

Hence the structure of the parameter plane near λ = 0 for n = 2 is
quite complicated.
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Parameter space, n=2

Certain structures are clearly visible however:

We can see many "rings" of
Sierpiński holes alternating with
what appear to be baby
Mandelbrot sets.

Looking more closely at any such
hole reveals many more such
rings surrounding it.

Our goal is ultimately to describe this structure completely.
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Mandelpiński Necklaces

In the dynamical plane, all parameters within the "dividing circle" of
radius 1/16 have the property that |vλ| < |cλ|.

There exist concentric curves Ck for all integers k such that:

C0 is defined to be the critical circle of radius 4
√
|λ|.

Ck+1 surrounds and maps 2-1 onto Ck for k > 0, and

C−k lies inside the critical circle and maps 2-1 onto Ck−1 for k > 0.

The k th Mandelpiński necklace in the dynamical plane is a simple
closed curve of parameters for which the critical values lie on C−k .
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Example: A Mandelpiński Necklace for n=2
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Sub-necklaces

In the dynamical plane, the sector of points whose arguments lie
between two adjacent critical points is mapped 1-1 onto the
complement of the rays extending from the critical values to infinity.

This sector therefore contains a preimage of the trap door, as well as
of all C−k such that vλ lies outside C−k .

Thus the preimage of the trap door is surrounded by infinitely many
simple closed curves that map onto these C−k ’s.

This recursively yields a structure of sub-rings and sub-sub-rings in the
dynamical plane that appears to be replicated in parameter space.

Can we explicitly show that this structure persists in the parameter
plane at each level? (Work in progress).
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Further Questions

Can we explicitly describe the arrangement of all Sierpiński holes
in some neighborhood of λ = 0?

What formula gives the number of Sierpiński holes in each
sub-necklace (and sub-sub-necklace, etc.)?

Can we prove the existence of all baby Mandelbrot sets in each
necklace?
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Thanks

Thank you for your attention.
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