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Why should we care?

Why could it be useful to consider πn(X , p) as topological space or
topological group?

If X is locally complicated πn(X , p) often �wants�to have an
interesting topology so that the topology of πn(X , p) is an invariant
of X itself.

In particular if πn(X , p) is isomorphic to πn(Y , q) we can hope to
distinguish X and Y by asking if πn(X , p) is homeomorphic or not
to πn(Y , q).
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Topology on homotopy groups of a continuum

Given a continuum X , what are some strategies for imposing topology
on the homotopy groups πn(X , p)?

Try to use topological quotients in a natural manner.

Try to use metric quotients or pseudo metric quotients in a natural
manner.

Try to use shape theory in a natural manner.

We will make these answers more precise soon
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What we will achieve

What we will attempt to convey in this talk:

We discuss 3 distinct topologies on πn(X , p), each of which is an
invariant of homotopy type the continuum.

The pseudo metric quotients will have strong ties to shape theory, but
in a natural sense proves to be a sharper tool

The quotient topology proves sharper still but often at the cost of
metrizability.

However the quotient topology often has the capacity to distinguish
homotopy type when the other methods fail.

Planar and other low dimensional Peano continua illustrate the
meaning and usefulness of the 3 de�ntions/tools.

πn(X , p) with quotient topology accentuates a fundamental
shortcoming in the general de�nition of product topology of G �H,
making the case for example, for the relevance and utility of the
category of sequential spaces SEQ.
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Familiar or easy de�nitions:

What is a pseudo metric?

(A metric except D(x , y) = 0 is permitted if x 6= y)
A function D : Y � Y ! [0,∞) such that
D(x , y) = D(y , x)

D(x , x) = 0

D(x , y) +D(y , z) � D(x , z)
Every pseudometric space generates a canonical metric
(Kolmogorov) quotient, x~y i¤ D(x , y) = 0
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Two natural quotients spaces

Two natural quotients

Every equivalence relation on a metric space (Y , d) generates two
generally distinct topologies on the equivalence classes [y ] 2 Y �.
Let q : Y ! Y � denote the natural function q(y) = [y ].
The quotient topology: A � Y � is closed i¤ q�1(A) � Y closed
The pseudo metric quotient (Y �,D) generated by the condition
D([x ], [y ]) < ε if d(x^, y^) < ε for some x^ 2 [x ] and y^ 2 [y ].
Precisely D([x ], [y ]) < ε i¤ there exists a �nite sequence
[x ] = [x0], [x1], ...[xK ] = [y ] and yi 2 [xi ] so that
ΣN�1i=0 d(yi , xi+1) < ε

If Y is compact and Y � is T2, then the quotients coincide.
Taking Y = f0, ...14 ,

1
3 ,
1
2 , 1g and identifying

1
m ~

1
n shows why we need

T2.
Glue together countably many copies of [0, 1] at 0, yields distinct T2
quotients.
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Three topologies

How exactly can we impose topology on πn(X , p) if X is a
continuum?

There are (at least) 3 natural ways.

Start with the space C (Sn, 1), (X , p) of based maps of the sphere
Sn ! X

Impose the uniform metric on C (Sn, 1), (X , p).

Collapse each path component of C (Sn, 1), (X , p) to a point, to
create the set πn(X , p).

We have natural surjection q : C (Sn, 1), (X , p)! πn(X , p)

Impose the quotient topology on πquotientn (X , p)

OR

impose the pseudo-metric quotient on πpseudometricn (X , p).
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Impose the quotient topology on πquotientn (X , p)

OR

impose the pseudo-metric quotient on πpseudometricn (X , p).
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We can also employ shape theory

We can also employ shape theory to create πshapen (X , p)

Pull back the shape group homomorphism
φ : πn(X , p)! lim πn(Um , p)

Declare φ�1(V ) � πn(X , p) open i¤ V � lim πn(Um , p) is open.

(If don�t know much shape theory, embed X � l2, let Um be the
union of �nitely many 1

2m open balls covering X , arrange Un+1 � Un,
φ is induced by j : X ! lim Un with inclusion bonding maps).
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How do the 3 topologies compare?

If X is a continuum we get a nice answer

They re�ne each other.

i.e. id is continuous as follows.

id : πquotientn (X , p)! πpseudometricn (X , p)! πshapen (X , p)
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The Peano continuum X =Hawaiian earring shows

The continuous isomorphism
id : πquotientn (X , p)! πpseudometricn (X , p)

might NOT be a homeomorphism ([F] 2005 AGT)

In fact π1(HE , p) is not a topological group in TOP.
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What are the theorems?

If X is the inverse limit of nested compact polyhedral retracts then...

πpseudometricn (X , p)~πshapen (X , p)

In particular if X is the inverse limit of nested compact polyhedral
retracts TFAE

X is πn shape injective

πpseudometricn (X , p) is a metric space
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A 2-dimensional Peano continuum shows they are distinct?

A 2-dimensional Peano continuum shows the 3 topologies are distinct?

No!

Apparent Theorem ( Yesterday afternoon stroll) [Brazas] [F])

Suppose X is a metric Peano continuum, then

πpseudometric1 (X , p)~πshape1 (X , p)

Follows from main results in

Thick Spanier groups and the �rst shape group ([Brazas][F])

(To appear Rocky Mountain Journal of Mathematics)

Moral: If X is a Peano continuum the image of π1(X , p) in the �rst
shape group can be understood intrinsically and geometrically without
reference to open covers of X
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What are the theorems?

If X is the inverse limit of nested compact polyhedral retracts then...

πpseudometricn (X , p)~πshapen (X , p)

In particular if X is the inverse limit of nested compact polyhedral
retracts TFAE

X is πn shape injective

πpseudometricn (X , p) is a metric space
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What are the interesting examples?

What are the interesting examples?

The punctured plane X = R2nf(0, 0)g.
It is locally compact but the topology of π1(X , p) depends on the
metric of X

This is why, to get a nice theory, it is helpful to assume X is a
compact metric space or continuum
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