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Canovas-Rodriguez Entropy

CR Definition of Entropy for non-compact spaces

hCR(f ,X) := sup
{
h(f ,K) | K ⊂ X − compact, invariant

}

Question (CR)

inf
{
hCR(f ,X) | f ∈ F

}
=?

X = R
F = {f : X→ X, transitive, non − bitransitive, continuous}
F = {f : X→ X, bitransitive, continuous}

X = [0,∞)

M. Łącka Topological Entropy of Compact Subsystems...



Canovas-Rodriguez Entropy

CR Definition of Entropy for non-compact spaces

hCR(f ,X) := sup
{
h(f ,K) | K ⊂ X − compact, invariant

}
Question (CR)

inf
{
hCR(f ,X) | f ∈ F

}
=?

X = R
F = {f : X→ X, transitive, non − bitransitive, continuous}
F = {f : X→ X, bitransitive, continuous}

X = [0,∞)

M. Łącka Topological Entropy of Compact Subsystems...



Canovas-Rodriguez Entropy

CR Definition of Entropy for non-compact spaces

hCR(f ,X) := sup
{
h(f ,K) | K ⊂ X − compact, invariant

}
Question (CR)

inf
{
hCR(f ,X) | f ∈ F

}
=?

X = R

F = {f : X→ X, transitive, non − bitransitive, continuous}
F = {f : X→ X, bitransitive, continuous}

X = [0,∞)

M. Łącka Topological Entropy of Compact Subsystems...



Canovas-Rodriguez Entropy

CR Definition of Entropy for non-compact spaces

hCR(f ,X) := sup
{
h(f ,K) | K ⊂ X − compact, invariant

}
Question (CR)

inf
{
hCR(f ,X) | f ∈ F

}
=?

X = R
F = {f : X→ X, transitive, non − bitransitive, continuous}

F = {f : X→ X, bitransitive, continuous}
X = [0,∞)

M. Łącka Topological Entropy of Compact Subsystems...



Canovas-Rodriguez Entropy

CR Definition of Entropy for non-compact spaces

hCR(f ,X) := sup
{
h(f ,K) | K ⊂ X − compact, invariant

}
Question (CR)

inf
{
hCR(f ,X) | f ∈ F

}
=?

X = R
F = {f : X→ X, transitive, non − bitransitive, continuous}
F = {f : X→ X, bitransitive, continuous}

X = [0,∞)

M. Łącka Topological Entropy of Compact Subsystems...



Canovas-Rodriguez Entropy

CR Definition of Entropy for non-compact spaces

hCR(f ,X) := sup
{
h(f ,K) | K ⊂ X − compact, invariant

}
Question (CR)

inf
{
hCR(f ,X) | f ∈ F

}
=?

X = R
F = {f : X→ X, transitive, non − bitransitive, continuous}
F = {f : X→ X, bitransitive, continuous}

X = [0,∞)

M. Łącka Topological Entropy of Compact Subsystems...



Question (CR)

inf
{
h(f , [0,∞)) | f - transitive, non-bitransitive

}
=?

Theorem
Let f be a transitive map of a real interval J. Then, exactly one
of the following statements holds:
1 f2 is transitive,
2 there exist intervals K,L ⊂ J, with K ∩ L = {c} and

K ∪ L = J, such that c is the unique fixed point for
f, f(K) = L and f(L) = K.

Corollary

If f is a transitive map of a half-open interval, then f is
bitransitive.
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Horseshoes

Let f be a map from a real interval L to R.

Horseshoe
An s-horseshoe for f is a compact interval J ⊂ L, and a
collection C = {A1, . . . ,As} of s ≥ 2 nonempty compact intervals
of J fulfilling the following two conditions:
1 the interiors of the sets from C are pairwise disjoint,
2 J ⊂ f(A) for every A ∈ C.

Tightness vs Looseness

A horseshoe (J,C) is tight if J is the union of elements of C and
f(A) = J for every A ∈ C.
A horseshoe (J,C) is loose if the union of elements of C is a
proper subset of J.
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Horseshoes imply entropy

Theorem
If a transitive map f of a real interval L has a loose s-horseshoe
then there exists a compact invariant subset K such that
hCR(f) ≥ h(f |K) > log s.
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inf
{
h(f , [0,∞)) | f − bitransitive, continuous

}
=?

Theorem (DK, MŁ)

If a map g from the half-open interval [0,∞) to itself is
transitive, then g has a loose 3-horseshoe, hence hCR(g) > log 3.
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Theorem (DK, MŁ)

If a transitive map of the real line f has at least two fixed
points, then f has a loose 2-horseshoe, hence hCR(f) > log 2.
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Proof

AK, KC form a loose 2-horseshoe for f.
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Theorem (DK, MŁ)

If a transitive map f of the real line has a unique fixed point,
then f2 has a loose 3-horseshoe, hence hCR(f) > log

√
3.
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Theorem
Let f be a transitive map of a real interval J. Then, exactly one
of the following statements holds:

1 f2 is transitive,
2 there exist intervals K,L ⊂ J, with K ∩ L = {c} and

K ∪ L = J, such that c is the unique fixed point for
f, f(K) = L and f(L) = K.
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Proof

Z− = (−∞,Z], Z+ = [Z,+∞)
Z+ ⊂ f(Z−), Z− ⊂ f(Z+).

1 f(Z−) = Z+, f(Z+) = Z−,
2 Z+ ( f(Z−) (⇐⇒ f is bitransitive).
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[Z, S], [S,B], [B,T] form a loose 3−horseshoe for f2.
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inf
{
hCR(f ,R) | f : X→ X bitransitive

}
= log

√
3
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inf
{
hCR(f ,R) | f : X→ X transitive, non-bitransitive

}
=

log
√

3
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