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Theorem

Let f be a transitive map of a real interval J. Then, exactly one
of the following statements holds:

@ f? is transitive,

@ there exist intervals K,L c J, with KN L = {c} and

K UL = J, such that c is the unique fixed point for
f, f{(K) =L and (L) = K.
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| \

Corollary
If f is a transitive map of a half-open interval, then f is
bitransitive.

A
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A horseshoe (J,C) is tight if J is the union of elements of C and
f(A) = J for every A € C.
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Horseshoes imply entropy

If a transitive map f of a real interval L has a loose s-horseshoe
then there exists a compact invariant subset K such that
hCR(f) > h(f|K) > logs.

M. Lacka Topological Entropy of Compact Subsystems...



inf {h(f,[0,00)) | f — bitransitive, continuous} =7? )
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inf {h(f,[0,00)) | f — bitransitive, continuous} =7? )

If a map g from the half-open interval [0, ) to itself is
transitive, then g has a loose 3-horseshoe, hence hor(g) > log 3.
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Theorem (DK, ML)

If a transitive map of the real line f has at least two fixed
points, then f has a loose 2-horseshoe, hence hcgr(f) > log 2.
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Theorem (DK, ML)

If a transitive map of the real line f has at least two fixed
points, then f has a loose 2-horseshoe, hence hcgr(f) > log 2.

A B K Cc zZ*
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AK, KC form a loose 2-horseshoe for f. J
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Theorem (DK, ML)

If a transitive map f of the real line has a unique fixed point,
then f2 has a loose 3-horseshoe, hence hcg(f) > log V3.
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(=00, Z), 7y = [Z, +0)
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7= (-0,2], Zy = [Z,+)
Z, cf(Z-), 7Z_cft(Zy).
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7= (-0,2], Zy = [Z,+)
Z, cf(Z-), 7Z_cft(Zy).

O £(Z.)=12,, £(Z.)=12.,
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7o = (-0,7), 2y = [Z,+0)
Z+ C f(Z_), 7_C f(Z+)

0 £(2-) =74, (Z4)="17,

Q Z, ¢ f(Z-) (<= f is bitransitive).
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[Z,S],[S,B], [B, T] form a loose 3—horseshoe for 2. J
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inf {hcg(f,R) | f:X — X bitransitive } = log V3 J
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inf {hcr(f,R) | f:X — X transitive, non-bitransitive} = J

log V3
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