Topological Entropy of Compact Subsystems of Transitive Real Line Maps

Martha Łącka joint work with: Dominik Kwietniak (UJ)

CR Definition of Entropy for non-compact spaces

 $h_{\operatorname{CR}}(f,X) := \sup \{ h(f,K) \mid K \subset X - \operatorname{compact}, \operatorname{invariant} \, \}$

CR Definition of Entropy for non-compact spaces

$$h_{CR}(f,X) := \sup\{h(f,K) \mid K \subset X - \text{ compact, invariant }\}$$

Question (CR)

$$\inf \left\{ h_{CR}(f, X) \mid f \in \mathcal{F} \right\} = ?$$

CR Definition of Entropy for non-compact spaces

$$h_{CR}(f,X) := \sup\{h(f,K) \mid K \subset X - \text{ compact, invariant }\}$$

Question (CR)

$$\inf\left\{h_{\operatorname{CR}}\big(f,X\big) \quad | \quad f \in \mathcal{F}\right\} = ?$$

$$\mathbf{X} = \mathbb{R}$$

CR Definition of Entropy for non-compact spaces

$$h_{CR}(f,X) := \sup\{h(f,K) \mid K \subset X - \text{ compact, invariant }\}$$

Question (CR)

$$\inf\left\{h_{CR}\big(f,X\big) \quad | \quad f\in\mathcal{F}\right\} = ?$$

$$X = \mathbb{R}$$

 $\mathcal{F} = \{f : X \to X, transitive, non - bitransitive, continuous\}$

CR Definition of Entropy for non-compact spaces

 $h_{CR}(f, X) := \sup\{h(f, K) \mid K \subset X - \text{ compact, invariant }\}$

Question (CR)

$$\inf\left\{h_{CR}\big(f,X\big) \quad | \quad f\in\mathcal{F}\right\} = ?$$

$$X = \mathbb{R}$$

 $\mathcal{F} = \{f : X \to X, transitive, non - bitransitive, continuous\}$

 $\mathcal{F} = \{f : X \to X, bitransitive, continuous\}$

CR Definition of Entropy for non-compact spaces

 $h_{CR}(f, X) := \sup\{h(f, K) \mid K \subset X - \text{ compact, invariant }\}\$

Question (CR)

$$\inf \{ h_{CR}(f, X) \mid f \in \mathcal{F} \} = ?$$

$$X = \mathbb{R}$$

 $\mathcal{F} = \{f : X \to X, transitive, non - bitransitive, continuous\}$

$$\mathcal{F} = \{f : X \to X, \text{ bitransitive, continuous}\}\$$

 $X = [0, \infty)$

Question (CR)

 $\inf \{h(f, [0, \infty)) \mid f - \text{transitive, non-bitransitive} \} = ?$

Question (CR)

 $\inf \{h(f, [0, \infty)) \mid f - transitive, non-bitransitive \} = ?$

Theorem

Let f be a transitive map of a real interval J. Then, exactly one of the following statements holds:

- \bullet f² is transitive,
- ② there exist intervals $K, L \subset J$, with $K \cap L = \{c\}$ and $K \cup L = J$, such that c is the unique fixed point for f, f(K) = L and f(L) = K.

Question (CR)

 $\inf \{h(f, [0, \infty)) \mid f - transitive, non-bitransitive \} = ?$

Theorem

Let f be a transitive map of a real interval J. Then, exactly one of the following statements holds:

- \bullet f² is transitive,
- ② there exist intervals $K, L \subset J$, with $K \cap L = \{c\}$ and $K \cup L = J$, such that c is the unique fixed point for f, f(K) = L and f(L) = K.

Corollary

If f is a transitive map of a half-open interval, then f is bitransitive.

Let f be a map from a real interval L to \mathbb{R} .

Let f be a map from a real interval L to \mathbb{R} .

Horseshoe

An s-horseshoe for f is a compact interval $J \subset L$, and a collection $C = \{A_1, \ldots, A_s\}$ of $s \ge 2$ nonempty compact intervals of J fulfilling the following two conditions:

Let f be a map from a real interval L to \mathbb{R} .

Horseshoe

An s-horseshoe for f is a compact interval $J \subset L$, and a collection $C = \{A_1, \ldots, A_s\}$ of $s \ge 2$ nonempty compact intervals of J fulfilling the following two conditions:

lacktriangledown the interiors of the sets from C are pairwise disjoint,

Let f be a map from a real interval L to \mathbb{R} .

Horseshoe

An s-horseshoe for f is a compact interval $J \subset L$, and a collection $C = \{A_1, \ldots, A_s\}$ of $s \ge 2$ nonempty compact intervals of J fulfilling the following two conditions:

- \bullet the interiors of the sets from C are pairwise disjoint,
- $J \subset f(A)$ for every $A \in C$.

Let f be a map from a real interval L to \mathbb{R} .

Horseshoe

An s-horseshoe for f is a compact interval $J \subset L$, and a collection $C = \{A_1, \ldots, A_s\}$ of $s \ge 2$ nonempty compact intervals of J fulfilling the following two conditions:

- lacktriangle the interiors of the sets from C are pairwise disjoint,

Tightness vs Looseness

A horseshoe (J, C) is tight if J is the union of elements of C and f(A) = J for every $A \in C$.

Let f be a map from a real interval L to \mathbb{R} .

Horseshoe

An s-horseshoe for f is a compact interval $J \subset L$, and a collection $C = \{A_1, \ldots, A_s\}$ of $s \ge 2$ nonempty compact intervals of J fulfilling the following two conditions:

- lacktriangle the interiors of the sets from C are pairwise disjoint,
- \bullet J \subset f(A) for every A \in C.

Tightness vs Looseness

A horseshoe (J, C) is tight if J is the union of elements of C and f(A) = J for every $A \in C$.

A horseshoe (J, C) is tight if J is the union of elements of C and f(A) = J for every $A \in C$.

A horseshoe (J, C) is tight if J is the union of elements of C and f(A) = J for every $A \in C$.

A horseshoe (J, C) is tight if J is the union of elements of C and f(A) = J for every $A \in C$.

Horseshoes imply entropy

Theorem

If a transitive map f of a real interval L has a loose s-horseshoe then there exists a compact invariant subset K such that $h_{CR}(f) \ge h(f|_K) > \log s$.

 $\inf \{h(f, [0, \infty)) \mid f - bitransitive, continuous\} = ?$

 $\inf \{h(f, [0, \infty)) \mid f - bitransitive, continuous\} = ?$

Theorem (DK, MŁ)

If a map g from the half-open interval $[0, \infty)$ to itself is transitive, then g has a loose 3-horseshoe, hence $h_{CR}(g) > \log 3$.

Theorem (DK, MŁ)

Theorem (DK, MŁ)

Theorem (DK, MŁ)

Theorem (DK, MŁ)

Theorem (DK, MŁ)

AK, KC form a loose 2-horseshoe for f.

Theorem (DK, MŁ)

If a transitive map f of the real line has a unique fixed point, then f^2 has a loose 3-horseshoe, hence $h_{CR}(f) > \log \sqrt{3}$.

Theorem

Let f be a transitive map of a real interval J. Then, exactly one of the following statements holds:

Theorem

Let f be a transitive map of a real interval J. Then, exactly one of the following statements holds:

 \bullet f² is transitive,

Theorem

Let f be a transitive map of a real interval J. Then, exactly one of the following statements holds:

- \bullet f² is transitive,
- ② there exist intervals $K, L \subset J$, with $K \cap L = \{c\}$ and $K \cup L = J$, such that c is the unique fixed point for f, f(K) = L and f(L) = K.

$$Z_-=\left(-\infty,Z\right],\quad Z_+=\left[Z,+\infty\right)$$

$$\begin{split} Z_- &= (-\infty, Z], \quad Z_+ = [Z, +\infty) \\ Z_+ &\subset f(Z_-), \quad Z_- \subset f(Z_+). \end{split}$$

$$\begin{split} Z_- &= (-\infty, Z], \quad Z_+ = [Z, +\infty) \\ Z_+ &\subset f(Z_-), \quad Z_- \subset f(Z_+). \end{split}$$

$$\begin{split} Z_- &= (-\infty, Z], \quad Z_+ = [Z, +\infty) \\ Z_+ &\subset f(Z_-), \quad Z_- \subset f(Z_+). \end{split}$$

- $2 Z_+ \subsetneq f(Z_-)$ (\iff f is bitransitive).

[Z, S], [S, B], [B, T] form a loose 3-horseshoe for f^2 .

 $\inf \{ h_{CR}(f, \mathbb{R}) \mid f: X \to X \text{ bitransitive } \} = \log \sqrt{3}$

 $\inf \left\{ h_{CR}(f,\mathbb{R}) \ | \ f: X \to X \ transitive, \ non-bitransitive \right\} = \\ \log \sqrt{3}$

Bibliography

- Ll. Alsedà, J. Llibre, and M. Misiurewicz, "Combinatorial dynamics and entropy in dimension one", second ed., World Scientific, River Edge, NJ, 2000.
- J.S. Cánovas, J.M. Rodríguez, "Topological entropy of maps on the real line", Topology Appl. 153 (2005), no. 5-6, 735-746. MR 2201485 (2006i:37086)
- D. Kwietniak, M. Ubik "Topological entropy of compact subsystems of transitive real line maps", Volume 28, Issue 1, 2013, p. 62-75