

Asdim of Some Graph Products

Greg Bell

Introduction

Metrics on Groups
Graph Products

Main Results
Finite Graph Products
Infinite Graphs

Further

On Asymptotic Properties of Some Infinite Graph Products

Greg Bell Danielle Moran

University of North Carolina at Greensboro

28th Summer Conference on Topology and its Applications
Nipissing University

Outline

Asdim of Some Graph Products

Greg Bell

Introduction
Asymptotic Dimensio
Metrics on Groups
Graph Products

Main Results
Finite Graph Products
Infinite Graphs
Other results

Further Questions

1 Introduction

- Asymptotic Dimension
- Metrics on Groups
- Graph Products
- 2 Main Results
 - Finite Graph Products
 - Infinite Graphs
 - Other results
- 3 Further Questions

Main Idea

Asdim of Some Graph Products

Greg Bell

Introduction

Asymptotic Dimen Metrics on Groups Graph Products

Main Results
Finite Graph Produc

Infinite Graphs
Other results

Further Questions

Antolín and Dreesen:

A finite graph product of groups with finite asymptotic dimension has finite asymptotic dimension.

Question

To what extent does this result extend to infinite products?

Main Idea

Asdim of Some Graph Products

Greg Bell

Introduction

Asymptotic Dimen Metrics on Groups Graph Products

Finite Graph Product Infinite Graphs

Further Questions

Antolín and Dreesen:

A finite graph product of groups with finite asymptotic dimension has finite asymptotic dimension.

Question:

To what extent does this result extend to infinite products?

Outline

Asdim of Some Graph Products

Greg Bell

Introduction

Asymptotic Dimension

Metrics on Groups Graph Products

Main Results
Finite Graph Products

Infinite Graphs

Other results

Further Questions

1 Introduction

- Asymptotic Dimension
- Metrics on Groups
- Graph Products
- 2 Main Results
 - Finite Graph Products
 - Infinite Graphs
 - Other results
- 3 Further Question

Asymptotic Dimension

Asdim of Some Graph Products

Greg Bell

Introduction

Asymptotic Dimension Metrics on Groups

Main Results
Finite Graph Products

Infinite Graphs
Other results

Further Questions

Definition (Gromov)

For a metric space X, we define:

asdim $X \le n \iff \forall R \exists \{\mathcal{U}_i\}_{i=0}^n$ uniformly bounded, R-disjoint families of subsets of X that cover X.

Rephrasing this:

A metric space X has $\operatorname{asdim} X \leq n$ if one can paint the space with n+1 colors in such a way that all splotches of color have uniformly bounded diameter and so that two splotches of the same color are far apart.

Asymptotic Dimension

Asdim of Some Graph Products

Greg Bell

Introduction

Asymptotic Dimension
Metrics on Groups

Finite Graph Products
Infinite Graphs

Other results

Further Questions

Definition (Gromov)

For a metric space X, we define:

asdim $X \le n \iff \forall R \exists \{\mathcal{U}_i\}_{i=0}^n$ uniformly bounded, R-disjoint families of subsets of X that cover X.

Rephrasing this:

A metric space X has asdim $X \le n$ if one can paint the space with n+1 colors in such a way that all splotches of color have uniformly bounded diameter and so that two splotches of the same color are far apart.

Asdim of Some Graph Products

Greg Bell

Introduction

Asymptotic Dimension Metrics on Groups

Graph Products

Finite Graph Products

Infinite Graphs
Other results

Further Questions

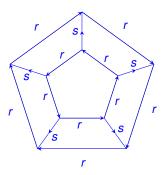


Figure : asdim $D_{2.5} = 0$.

- Compacta have asdim 0.
- \blacksquare asdim $\mathbb{Z} = 1$.
- asdim $\mathbb{Z}^n \leq n$.
- asdim $\mathbb{F}_2 = 1$.

Asdim of Some **Graph Products**

Greg Bell

Asymptotic Dimension

Figure : asdim $\mathbb{Z} = 1$

- Compacta have asdim 0.
- \blacksquare asdim $\mathbb{Z}=1$.
- asdim $\mathbb{Z}^n < n$.
- \blacksquare asdim $\mathbb{F}_2 = 1$.

Asdim of Some Graph Products

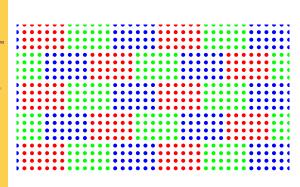
Greg Bell

Asymptotic Dimension
Metrics on Groups

Main Results
Finite Graph Products
Infinite Graphs

Infinite Graphs
Other results

Further Questions



- Compacta have asdim 0.
- \blacksquare asdim $\mathbb{Z} = 1$.
- asdim $\mathbb{Z}^n \leq n$.
- asdim $\mathbb{F}_2 = 1$.

Figure : asdim $\mathbb{Z}^2 \leq 2$.

Asdim of Some Graph Products

Greg Bell

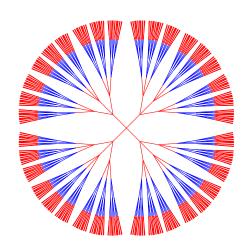
Introductio

Asymptotic Dimension Metrics on Groups

Main Results

Finite Graph Product Infinite Graphs

Further Questions



- Compacta have asdim 0.
- \blacksquare asdim $\mathbb{Z} = 1$.
- asdim $\mathbb{Z}^n \le n$.
- $\quad \blacksquare \ \ \text{asdim} \, \mathbb{F}_2 = 1.$

Asdim of Some Graph Products

Greg Bell

Introduction

Asymptotic Dimension Metrics on Groups

Main Results
Finite Graph Product

Finite Graph Product
Infinite Graphs

Other results

Further Questions These groups have infinite asdim

- Thompson's group.
- $\blacksquare \mathbb{Z} \wr \mathbb{Z}$
- any group containing \mathbb{Z}^n for all n.

- Compacta have asdim 0.
- \blacksquare asdim $\mathbb{Z} = 1$.
- asdim $\mathbb{Z}^n \leq n$.
- asdim $\mathbb{F}_2 = 1$.

Outline

Asdim of Some Graph Products

Greg Bell

Introduction

Metrics on Groups Graph Products

Main Results
Finite Graph Products

Finite Graph Products
Infinite Graphs
Other results

Further Questions

1 Introduction

- Asymptotic Dimension
- Metrics on Groups
- Graph Products
- 2 Main Results
 - Finite Graph Products
 - Infinite Graphs
 - Other results
- 3 Further Questions

Asdim of Some Graph Products

Greg Bell

Introduction
Asymptotic Dimension
Metrics on Groups
Graph Products

Main Results
Finite Graph Products
Infinite Graphs

Further Questions A finitely generated group can be endowed with a (left-invariant) word metric:

- For each word w in S, define $||w||_S$ to be the number of generators in w.
- For $g, g' \in \Gamma$, put $d(g, g') = \min\{\|w\|_{S} : w = g^{-1}g'\}$.
- This turns the group Γ into a proper (discrete) metric space
- Different choices of *S* give rise to large-scale equivalent metric spaces.

Asdim of Some Graph Products

Greg Bell

Introduction
Asymptotic Dimension
Metrics on Groups
Graph Products

Main Results
Finite Graph Products
Infinite Graphs
Other results

Further Questions A finitely generated group can be endowed with a (left-invariant) word metric:

- For each word w in S, define $||w||_S$ to be the number of generators in w.
- For $g, g' \in \Gamma$, put $d(g, g') = \min\{\|w\|_{\mathcal{S}} : w = g^{-1}g'\}$.
- This turns the group Γ into a proper (discrete) metric space
- Different choices of *S* give rise to large-scale equivalent metric spaces.

Asdim of Some Graph Products

Greg Bell

Introduction
Asymptotic Dimension
Metrics on Groups
Graph Products

Main Results
Finite Graph Products
Infinite Graphs
Other results

Further Questions A finitely generated group can be endowed with a (left-invariant) word metric:

- For each word w in S, define $||w||_S$ to be the number of generators in w.
- For $g, g' \in \Gamma$, put $d(g, g') = \min\{\|w\|_{S} : w = g^{-1}g'\}$.
- This turns the group Γ into a proper (discrete) metric space.
- Different choices of *S* give rise to large-scale equivalent metric spaces.

Asdim of Some Graph Products

Greg Bell

Introduction
Asymptotic Dimension
Metrics on Groups
Graph Products

Main Results
Finite Graph Products
Infinite Graphs
Other results

Further Questions A finitely generated group can be endowed with a (left-invariant) word metric:

- For each word w in S, define $||w||_S$ to be the number of generators in w.
- For $g, g' \in \Gamma$, put $d(g, g') = \min\{\|w\|_{S} : w = g^{-1}g'\}$.
- This turns the group Γ into a proper (discrete) metric space.
- Different choices of *S* give rise to large-scale equivalent metric spaces.

Asdim of Some Graph Products

Greg Bell

Introduction

Metrics on Groups

Main Results

Finite Graph Produc

Infinite Graphs
Other results

Further Questions

Consider the two presentations of \mathbb{Z} : $\langle a \mid \rangle$ and $\langle a, b \mid a^9 = b \rangle$.

They give rise to two Cayley graphs:

$$\mathbb{Z}=\langle a\,|
angle$$

$$\mathbb{Z} = \langle a, b \mid b = a^9 \rangle$$

Asdim of Some Graph Products

Greg Bell

Introduction

Metrics on Groups

Graph Products

Main Results

Infinite Graphs
Other results

Further Questions Consider the two presentations of \mathbb{Z} : $\langle a \mid \rangle$ and $\langle a, b \mid a^9 = b \rangle$. They give rise to two Cayley graphs:

$$\mathbb{Z}=\langle a\,|
angle$$

$$\mathbb{Z} = \langle a, b \mid b = a^9 \rangle$$

Asdim of Some Graph Products

Greg Bell

Introduction
Asymptotic Dime

Metrics on Groups Graph Products

Main Results
Finite Graph Produc

Infinite Graphs
Other results

Further Questions Consider the two presentations of \mathbb{Z} : $\langle a \mid \rangle$ and $\langle a, b \mid a^9 = b \rangle$. They give rise to two Cayley graphs:

$$\mathbb{Z}=\langle a\,|
angle$$

$$\mathbb{Z} = \langle a, b \mid b = a^9 \rangle$$

Asdim of Some Graph Products

Greg Bell

Asymptotic Dime

Metrics on Groups Graph Products

Main Results
Finite Graph Products
Infinite Graphs

Other results

Consider the two presentations of \mathbb{Z} : $\langle a \mid \rangle$ and $\langle a, b \mid a^9 = b \rangle$. They give rise to two Cayley graphs:

$$\mathbb{Z} = \langle a \mid \rangle$$

$$\mathbb{Z}=\left\langle a,b\mid b=a^{9}
ight
angle$$

Asdim of Some Graph Products

Greg Bell

Asymptotic Dimens
Metrics on Groups
Graph Products

Main Results
Finite Graph Products
Infinite Graphs

Infinite Graphs
Other results

Further Questions Consider the two presentations of \mathbb{Z} : $\langle a \mid \rangle$ and $\langle a, b \mid a^9 = b \rangle$. They give rise to two Cayley graphs:

$$\mathbb{Z} = \langle a \mid \rangle$$

$$\mathbb{Z}=\left\langle a,b\mid b=a^{9}
ight
angle$$

Proper Metrics on Countable Groups

Asdim of Some Graph Products

Greg Bell

Asymptotic Dimensi
Metrics on Groups
Graph Products

Main Results
Finite Graph Products
Infinite Graphs
Other results

Further Questions The word metric is proper, left-invariant, and any two word metrics yield equivalent metric spaces.

Question:

Given a countable group, how can we find a proper left-invariant metric that is a large-scale invariant?

Theorem (J. Smith)

- **1** For countable G, \exists ! left-invariant, proper metric, up to coarse equivalence.
- 2 Such a metric is given by a weighting of the generating set.

General Problem

Asdim of Some Graph Products

Greg Bell

Introduction
Asymptotic Dimension
Metrics on Groups
Graph Products

Main Results
Finite Graph Products
Infinite Graphs

Other results
Further

Problem:

Given spaces (or groups) with known asdim, construct a new space and compute its asdim.

Examples

- Direct product. (Easy)
- 2 Amalgamated products. (Dranishnikov)
- 3 Graph products. (Antolín-Dreesen)

Outline

Asdim of Some Graph Products

Greg Bell

Introduction
Asymptotic Dimension
Metrics on Groups
Graph Products

Main Results
Finite Graph Products
Infinite Graphs
Other results

Further Questions

1 Introduction

- Asymptotic Dimension
- Metrics on Groups
- Graph Products
- 2 Main Results
 - Finite Graph Products
 - Infinite Graphs
 - Other results
- 3 Further Questions

Graph Groups

Asdim of Some Graph Products

Greg Bell

Introductio

Asymptotic Dimensi Metrics on Groups Graph Products

Main Results
Finite Graph Products
Infinite Graphs

Further Questions

Definition (Baudisch '70s)

A graph group is a group of the form $\langle S \mid R \rangle$ where the only permissible relations are commutators of generators.

Rephrasing

Equivalently, take $\Gamma = (V, E)$ and put $G = \langle V \mid R \rangle$ where $R = \{ [v_i, v_j] \mid (v_i, v_j) \in E \}$.

Graph Groups

Asdim of Some Graph Products

Greg Bell

Asymptotic Dimension
Metrics on Groups
Graph Products

Main Results
Finite Graph Products
Infinite Graphs

Further Questions

Definition (Baudisch '70s)

A graph group is a group of the form $\langle S \mid R \rangle$ where the only permissible relations are commutators of generators.

Rephrasing:

Equivalently, take
$$\Gamma = (V, E)$$
 and put $G = \langle V \mid R \rangle$ where $R = \{ [v_i, v_j] \mid (v_i, v_j) \in E \}$.

Graph Groups

Asdim of Some Graph Products

Greg Bell

Asymptotic Dimension
Metrics on Groups
Graph Products

Main Results
Finite Graph Products
Infinite Graphs
Other results

Further Questions

Definition (Baudisch '70s)

A graph group is a group of the form $\langle S \mid R \rangle$ where the only permissible relations are commutators of generators.

Rephrasing:

Equivalently, take $\Gamma = (V, E)$ and put $G = \langle V \mid R \rangle$ where $R = \{ [v_i, v_j] \mid (v_i, v_j) \in E \}$.

Two Extreme Cases

Graph Products of Groups

Asdim of Some Graph Products

Greg Bell

Asymptotic Dimensi Metrics on Groups Graph Products

Main Results
Finite Graph Product
Infinite Graphs
Other results

Further Ouestions

Definition (Green 1990)

Let $\Gamma = (V, E)$ be a graph. Let $\mathfrak{G} = \{G_v : v \in V\}$ be a collection of groups. Then, the graph product is the group

$$\Gamma\mathfrak{G} = \langle G_k \mid [G_{v_i}, G_{v_i}], \, \forall (v_i, v_j) \in E \rangle.$$

Graph Products of Groups

Asdim of Some Graph Products

Greg Bell

Introduction
Asymptotic Dimension
Metrics on Groups
Graph Products

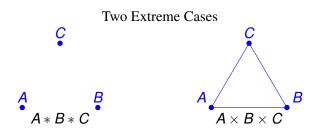
Main Results
Finite Graph Product
Infinite Graphs
Other results

Further Questions

Definition (Green 1990)

Let $\Gamma = (V, E)$ be a graph. Let $\mathfrak{G} = \{G_v \colon v \in V\}$ be a collection of groups. Then, the graph product is the group

$$\Gamma\mathfrak{G} = \left\langle \textit{G}_{\textit{k}} \mid [\textit{G}_{\textit{v}_{\textit{i}}}, \textit{G}_{\textit{v}_{\textit{j}}}], \, \forall (\textit{v}_{\textit{i}}, \textit{v}_{\textit{j}}) \in \textit{E} \right\rangle.$$



Graph Products of Groups

Asdim of Some Graph Products

Greg Bell

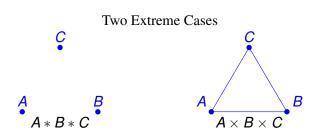
Introduction

Asymptotic Dimens
Metrics on Groups
Graph Products

Main Results
Finite Graph Product

Infinite Graphs
Other results

Further Questions



Folklore:

What holds for direct products and amalgams holds for graph products.

Outline

Asdim of Some Graph Products

Greg Bell

Introduction

Metrics on Groups
Graph Products

Main Result

Finite Graph Products

Infinite Graphs

Further Questions

1 Introduction

- Asymptotic Dimension
- Metrics on Groups
- Graph Products

2 Main Results

- Finite Graph Products
- Infinite Graphs
- Other results
- 3 Further Questions

Antolín – Dreesen result

Asdim of Some Graph Products

Greg Bell

Introduction

Asymptotic Dimensi
Metrics on Groups

Main Results

Finite Graph Products

Infinite Graphs

Further Questions

Lemma (Green).

If

- $\Gamma = (V, E)$ simplicial graph
- \blacksquare \mathfrak{G} collection of groups indexed by V.

Then, $\forall v \in V$,

$$\Gamma \mathfrak{G} = G_A *_{G_C} G_B$$

where
$$C = link_{\Gamma}(v)$$
, $B = \{v\} \cup link_{\Gamma}(v)$ and $A = V \setminus \{v\}$.

Antolín – Dreesen result

Asdim of Some Graph Products

Greg Bell

Introduction

Asymptotic Dimensi Metrics on Groups Graph Products

Main Results

Finite Graph Products

Infinite Graphs

Further

Lemma (Green).

If

- $\Gamma = (V, E)$ simplicial graph
- \blacksquare \mathfrak{G} collection of groups indexed by V.

Then, $\forall v \in V$,

$$\Gamma \mathfrak{G} = G_A *_{G_C} G_B,$$

where
$$C = link_{\Gamma}(v)$$
, $B = \{v\} \cup link_{\Gamma}(v)$ and $A = V \setminus \{v\}$.

Antolín – Dreesen result

Asdim of Some Graph Products

Greg Bell

Introductio

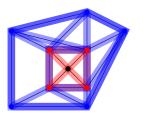
Asymptotic Dimension
Metrics on Groups
Graph Products

Main Results

Finite Graph Products

Other results

Further Questions



$$\Gamma \mathfrak{G} = G_A *_{G_C} G_B$$

Theorem (Dranishnikov)

- \blacksquare asdim $A \times B \le \text{asdim } A + \text{asdim } B$.
- 2 asdim $A *_C B \le \max\{\text{asdim } A, \text{asdim } B, \text{asdim } C + 1\}$

Antolín-Dreesen Result

Asdim of Some Graph Products

Greg Bell

Introductio

Asymptotic Dimensi Metrics on Groups

Main Results

Finite Graph Products

Infinite Graphs

Further Questions

Theorem (Antolín–Dreesen)

asdim $\Gamma \mathfrak{G} \leq n$, where

$$n = max \left\{ \sum_{v \in C} max\{1, asdim G_v\} \colon \textit{C complete graph} \right\}$$

Proof.

Lises

- Induction on $|V\Gamma|$,
- Green's result decomposing the product as an amalgam
- Results on asdim of products.

Antolín-Dreesen Result

Asdim of Some Graph Products

Greg Bell

Introduction

Asymptotic Dimensi Metrics on Groups Graph Products

Main Results

Finite Graph Products
Infinite Graphs

Other results

Further Questions

Theorem (Antolín–Dreesen)

asdim $\Gamma \mathfrak{G} \leq n$, where

$$n = max \left\{ \sum_{v \in C} max\{1, asdim G_v\} \colon \textit{C complete graph} \right\}$$

Proof.

Uses

- Induction on $|V\Gamma|$,
- Green's result decomposing the product as an amalgam
- Results on asdim of products.

Outline

Asdim of Some Graph Products

Greg Bell

Introduction
Asymptotic Dimensio
Metrics on Groups

Main Results
Finite Graph Products

Infinite Graphs

Further

1 Introduction

- Asymptotic Dimension
- Metrics on Groups
- Graph Products

2 Main Results

- Finite Graph Products
- Infinite Graphs
- Other results
- 3 Further Questions

How to extend?

Asdim of Some Graph Products

Greg Bell

Introduction

Metrics on Groups
Graph Products

Main Results
Finite Graph Products

Infinite Graphs
Other results

Further Questions

Some things that cause difficulty:

- Need to describe metric.
- Need to use different techniques.

Main Result

Asdim of Some Graph Products

Greg Bell

Asymptotic Dimensi Metrics on Groups

Main Results
Finite Graph Products
Infinite Graphs

Other results

Theorem (B.-Moran)

Let Γ be a (locally finite) tree and let $\{G_v\}$ be a collection of f.g. groups with asdim $G_v \leq n$. Endow $G = \Gamma \mathfrak{G}$ with a left-invariant proper metric. Then, asdim $G \leq 2n$.

Main Result

Asdim of Some Graph Products

Greg Bell

Introduction

Asymptotic Dimension

Metrics on Groups

Graph Products

Main Results
Finite Graph Products
Infinite Graphs

Infinite Graphs
Other results

Further Questions

Theorem (B.-Moran)

Let Γ be a (locally finite) tree and let $\{G_v\}$ be a collection of f.g. groups with asdim $G_v \leq n$. Endow $G = \Gamma \mathfrak{G}$ with a left-invariant proper metric. Then, asdim $G \leq 2n$.

Theorem (Easy special case)

Put $\Gamma = \mathbb{N}$, $G_n = \mathbb{Z}$ for all n, and set weights equal to 2^n . Then asdim G = 2.

Asdim of Some Graph Products

Greg Bell

Asymptotic Dimension
Metrics on Groups
Graph Products

Main Results
Finite Graph Products
Infinite Graphs

Infinite Graphs
Other results

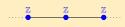
Other results Further

Theorem (Easy special case)

Put $\Gamma = \mathbb{N}$, $G_n = \mathbb{Z}$ for all n, and set weights equal to 2^n . Then asdim G = 2.

Proof.

- 1 Let *R* be given.
- 2 Take *n* s.t. $2^n \le R < 2^{n+1}$
- 3 Apply Antolín-Dreesen and create covers.



Other graphs?

Asdim of Some Graph Products

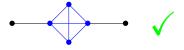
Greg Bell

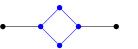
Introduction
Asymptotic Dimension
Metrics on Groups
Graph Products

Main Results
Finite Graph Products
Infinite Graphs

Other results

Our theorem also holds when Γ is obtained from a tree by replacing vertices by complete graphs.





Outline

Asdim of Some Graph Products

Greg Bell

Introduction

Asymptotic Dimension

Metrics on Groups

Graph Products

Main Results
Finite Graph Products
Infinite Graphs
Other results

Further Questions

1 Introduction

- Asymptotic Dimension
- Metrics on Groups
- Graph Products

2 Main Results

- Finite Graph Products
- Infinite Graphs
- Other results
- 3 Further Questions

Other properties

Asdim of Some Graph Products

Greg Bell

Introduction
Asymptotic Dimension
Metrics on Groups
Graph Products

Main Results
Finite Graph Products
Infinite Graphs
Other results

Further Questions The techniques used by Antolín-Dreesen can be used to show that

- (Finite) graph products preserve "property A."
- Follows from this property being preserved under free products (K. Dykema exactness; J.-L. Tu; G.B.)

There is hope that

■ (Finite) graph products preserve "asymptotic property C."

Example

On the tree \mathbb{N} ; place a copy of \mathbb{Z} at all odd vertices and at 2n place a copy of \mathbb{Z}^{2n} . Give it a left-invariant proper metric, say, weighted by 2^n .

Then $\Gamma \mathfrak{G}$ has asymptotic property C.

This is similar to (but much easier than) a question of Dranishnikov–Zarichnyi (Does \triangle Zⁿ have C?)

Other properties

Asdim of Some Graph Products

Greg Bell

Introduction
Asymptotic Dimension
Metrics on Groups
Graph Products

Main Results
Finite Graph Products
Infinite Graphs
Other results

Further Questions The techniques used by Antolín-Dreesen can be used to show that

- (Finite) graph products preserve "property A."
- Follows from this property being preserved under free products (K. Dykema exactness; J.-L. Tu; G.B.)

There is hope that

■ (Finite) graph products preserve "asymptotic property C."

Example

On the tree \mathbb{N} ; place a copy of \mathbb{Z} at all odd vertices and at 2n place a copy of \mathbb{Z}^{2n} . Give it a left-invariant proper metric, say, weighted by 2^n .

Then $\Gamma \mathfrak{G}$ has asymptotic property C.

This is similar to (but much easier than) a question of Dranishnikov–Zarichnyi (Does $\bigoplus_{n} Z^n$ have C?)

Other properties

Asdim of Some Graph Products

Greg Bell

Introduction
Asymptotic Dimension
Metrics on Groups
Graph Products

Main Results
Finite Graph Products
Infinite Graphs
Other results

Further Questions The techniques used by Antolín-Dreesen can be used to show that

- (Finite) graph products preserve "property A."
- Follows from this property being preserved under free products (K. Dykema exactness; J.-L. Tu; G.B.)

There is hope that

■ (Finite) graph products preserve "asymptotic property C."

Example

On the tree \mathbb{N} ; place a copy of \mathbb{Z} at all odd vertices and at 2n place a copy of \mathbb{Z}^{2n} . Give it a left-invariant proper metric, say, weighted by 2^n .

Then $\Gamma\mathfrak{G}$ has asymptotic property C.

This is similar to (but much easier than) a question of Dranishnikov–Zarichnyi (Does $\bigoplus_n Z^n$ have C?)

Asdim of Some Graph Products

Greg Bell

Introductio

Asymptotic Dimension

Metrics on Groups

Graph Products

Main Results

Finite Graph Product

Other results

Further Questions

Ouestion

Suppose Γ is a graph with uniformly bounded valence such that

$$n = \max \left\{ \sum_{v \in C} \max\{1, \operatorname{asdim} G_v\} \colon C \text{ complete graph} \right\}.$$

Does it follow that asdim $\Gamma \mathfrak{G} \leq n$?

Question

To what extent do infinite graph products have property A and asymptotic property C?

Asdim of Some Graph Products

Greg Bell

Introduction

Asymptotic Dimensio Metrics on Groups Graph Products

Main Results
Finite Graph Products
Infinite Graphs

Further Questions

Ouestion

Suppose Γ is a graph with uniformly bounded valence such that

$$n = \max \left\{ \sum_{v \in C} \max\{1, \operatorname{asdim} G_v\} \colon C \text{ complete graph} \right\}.$$

Does it follow that asdim $\Gamma \mathfrak{G} \leq n$?

Question

To what extent do infinite graph products have property A and asymptotic property C?