HYPERSPACES OF KELLER COMPACTA AND THEIR ORBIT SPACES

Saúl Juárez-Ordóñez

National University of Mexico (UNAM)

28th Summer Conference on Topology and its Applications,

North Bay, Canada, July 22nd-26th

Joint work with Sergey Antonyan and Natalia Jonard-Pérez.

National University of Mexico (UNAM)

INDEX

- 1. Keller compacta
- 2. G-spaces
- 3. The problem and the result
- 4. Important notions
- 5. Sketch of the proof

Keller Compacta

An infinite-dimensional compact convex subset K of a topological linear space is called a **Keller compactum**, if it is affinely embeddable in the Hilbert space ℓ_2 :

$$K \hookrightarrow \ell_2 = \{(x_n) \mid x_n \in \mathbb{R}, \sum_{n=1}^{\infty} x_n^2 < \infty\}.$$

Let K and V be convex subsets of linear spaces.

A map $f: K \to V$ is called **affine**, if for every $x_1, \ldots, x_n \in K$ and $t_1, ..., t_n \in [0,1]$ such that $\sum_{i=1}^n t_i = 1$

$$f\left(\sum_{i=1}^n t_i x_i\right) = \sum_{i=1}^n t_i f(x_i).$$

Let K and V be convex subsets of linear spaces.

A map $f: K \to V$ is called **affine**, if for every $x_1, \dots, x_n \in K$ and $t_1, ..., t_n \in [0,1]$ such that $\sum_{i=1}^n t_i = 1$

$$f\left(\sum_{i=1}^n t_i x_i\right) = \sum_{i=1}^n t_i f(x_i).$$

PROPOSITION

Every infinite-dimensional metrizable compact convex subset of a locally convex linear space is a Keller compactum.

PROPOSITION

Every infinite-dimensional metrizable compact convex subset of a locally convex linear space is a Keller compactum.

The Hilbert cube

$$Q = \prod_{n=1}^{\infty} [-1, 1]_n \subset \mathbb{R}^{\infty}$$

is affinely homeomorphic to $\{x \in \ell_2 \mid |x_n| \le 1/n\} \subset \ell_2$.

PROPOSITION

Every infinite-dimensional metrizable compact convex subset of a locally convex linear space is a Keller compactum.

The Hilbert cube

$$Q = \prod_{n=1}^{\infty} [-1, 1]_n \subset \mathbb{R}^{\infty}$$

is affinely homeomorphic to $\{x \in \ell_2 \mid |x_n| \le 1/n\} \subset \ell_2$.

The space P(X) of probability measures of an infinite compact metric space X endowed with the topology of weak convergence in measures:

$$\mu_n \rightsquigarrow \mu \qquad \iff \qquad \int f \, d\mu_n \rightsquigarrow \int f \, d\mu \qquad \forall \, f \in C(X).$$

THEOREM (O. H. KELLER)

Every infinite-dimensional compact convex subset of the Hilbert space ℓ_2 is homeomorphic to the Hilbert cube Q.

THEOREM (O. H. KELLER)

Every infinite-dimensional compact convex subset of the Hilbert space ℓ_2 is homeomorphic to the Hilbert cube Q.

However, not all Keller compacta are affinely homeomorphic to each other.

THEOREM (O. H. KELLER)

Every infinite-dimensional compact convex subset of the Hilbert space ℓ_2 is homeomorphic to the Hilbert cube Q.

However, not all Keller compacta are affinely homeomorphic to each other.

We consider Keller compacta together with its affine-topological structure.

G-SPACES

Let G be a topological group. A G-space is a topological space X together with a fixed continuous action of G:

$$G \times X \longrightarrow X$$
, $(g,x) \longmapsto gx$.

G-SPACES

Let G be a topological group. A G-space is a topological space X together with a fixed continuous action of G:

$$G \times X \longrightarrow X$$
, $(g,x) \longmapsto gx$.

A map $f: X \to Y$ between G-spaces is called **equivariant** if for every $x \in X$ and $g \in G$,

$$f(gx) = gf(x)$$

$$G \times X \longrightarrow X$$

$$\downarrow_{1 \times f} \qquad \downarrow_{f}$$

$$G \times Y \longrightarrow Y$$

Let X be a G-space. A subset $A \subset X$ is called **invariant** if

$$A=\{ga\mid g\in G,\ a\in A\}.$$

Let X be a G-space. A subset $A \subset X$ is called **invariant** if

$$A = \{ ga \mid g \in G, \ a \in A \}.$$

The **orbit of** $x \in X$ is the smallest invariant subset containing x:

$$Gx = \{gx \mid g \in G\}.$$

The **orbit space** of X is the set

$$X/G = \{Gx \mid x \in X\}$$

endowed with the quotient topology given by the orbit map

$$X \longrightarrow X/G$$
, $x \longmapsto Gx$.

$$2^X = \{ A \subset X \mid \emptyset \neq A \text{ compact} \}$$

endowed with the topology induced by the Hausdorff metric:

$$d_H(A,B) = \max \left\{ \sup_{b \in B} d(b,A), \sup_{a \in A} d(a,B) \right\}, \quad A,B \in 2^X.$$

Let (X, d) be a metric space. The **hyperspace** of X:

$$2^X = \{ A \subset X \mid \emptyset \neq A \text{ compact} \}$$

endowed with the topology induced by the Hausdorff metric:

$$d_H(A,B) = \max \left\{ \sup_{b \in B} d(b,A), \sup_{a \in A} d(a,B) \right\}, \quad A,B \in 2^X.$$

Let X be a subset of a topological linear space. The **cc-hyperspace** of X:

$$cc(X) = \{A \in 2^X \mid A \text{ convex}\}.$$

If X is a metrizable G-space, then 2^X becomes a G-space with the induced action:

$$G \times 2^X \longrightarrow 2^X$$
, $(g,A) \longmapsto gA = \{ga \mid a \in A\}$.

In case X is a subset of a topological linear space and every $g \in G$ preserves convexity, cc(X) is an invariant subspace of 2^X under this action.

MOTIVATION

QUESTION (J. WEST, 1976)

Let G be a compact connected Lie group. Is the orbit space $2^G/G$ an AR? If it is, is it homeomorphic to the Hilbert cube Q?

MOTIVATION

QUESTION (J. WEST, 1976)

Let G be a compact connected Lie group. Is the orbit space $2^G/G$ an AR? If it is, is it homeomorphic to the Hilbert cube Q?

Toruńczyk and West proved that $2^{\mathbb{S}^1}/\mathbb{S}^1\in\mathsf{AR}$ not homeomorphic to Q.

MOTIVATION

QUESTION (J. WEST, 1976)

Let G be a compact connected Lie group. Is the orbit space $2^G/G$ an AR? If it is, is it homeomorphic to the Hilbert cube Q?

Toruńczyk and West proved that $2^{\mathbb{S}^1}/\mathbb{S}^1 \in \mathsf{AR}$ not homeomorphic to Q.

Antonyan proved that $2^{\mathbb{S}^1}/O(2)\cong BM(2)$, which is an AR but not homeomorphic to Q.

For $n \ge 2$, the orbit space $2^{\mathbb{B}^n}/O(n)$ is homeomorphic to the Hilbert cube Q.

For $n \ge 2$, the orbit space $2^{\mathbb{B}^n}/O(n)$ is homeomorphic to the Hilbert cube Q.

THEOREM (S. ANTONYAN AND N. JONARD-PÉREZ)

For $n \ge 2$, the orbit space $cc(\mathbb{B}^n)/O(n)$ is homeomorphic to cone(BM(n)).

For $n \ge 2$, the orbit space $2^{\mathbb{B}^n}/O(n)$ is homeomorphic to the Hilbert cube Q.

THEOREM (S. ANTONYAN AND N. JONARD-PÉREZ)

For $n \ge 2$, the orbit space $cc(\mathbb{B}^n)/O(n)$ is homeomorphic to cone(BM(n)).

The Hilbert cube Q is a natural infinite-dimensional analog of \mathbb{B}^n . An analog for O(n) is the group O(Q) of affine isometries of Q, which leave the origin fixed.

For $n \ge 2$, the orbit space $2^{\mathbb{B}^n}/O(n)$ is homeomorphic to the Hilbert cube Q.

THEOREM (S. ANTONYAN AND N. JONARD-PÉREZ)

For $n \ge 2$, the orbit space $cc(\mathbb{B}^n)/O(n)$ is homeomorphic to cone(BM(n)).

The Hilbert cube Q is a natural infinite-dimensional analog of \mathbb{B}^n . An analog for O(n) is the group O(Q) of affine isometries of Q, which leave the origin fixed.

The purpose of this talk is to show that

$$2^{Q}/O(Q) \cong Q$$
 $cc(Q)/O(Q) \cong Q$.

Centrally symmetric Keller compacta are infinite-dimensional analogs of \mathbb{B}^n .

Centrally symmetric Keller compacta are infinite-dimensional analogs of \mathbb{B}^n .

In analogy to the action of O(n) in \mathbb{B}^n , we consider actions of compact groups on centrally symmetric Keller compacta that respect their affine-topological structure.

Centrally symmetric Keller compacta are infinite-dimensional analogs of \mathbb{B}^n .

In analogy to the action of O(n) in \mathbb{B}^n , we consider actions of compact groups on centrally symmetric Keller compacta that respect their affine-topological structure.

We say that a group G acts **affinely** on a Keller compactum K if for every $g \in G$, $x_1, \ldots, x_n \in K$ and $t_1, \ldots, t_n \in [0,1]$ such that $\sum_{i=1}^{n} t_{i} = 1$

$$g\left(\sum_{i=1}^n t_i x_i\right) = \sum_{i=1}^n t_i g x_i.$$

PROBLEM

Given a centrally symmetric Keller compactum K (e.g., the Hilbert cube $Q \subset \mathbb{R}^{\infty}$), describe the topological structure of the orbit spaces of 2^K and cc(K) with respect to the affine action of a compact group G (not necessarily Lie).

PROBLEM

Given a centrally symmetric Keller compactum K (e.g., the Hilbert cube $Q \subset \mathbb{R}^{\infty}$), describe the topological structure of the orbit spaces of 2^K and cc(K) with respect to the affine action of a compact group G (not necessarily Lie).

THEOREM

Let G be a compact group acting affinely on a centrally symmetric Keller compactum K, then the orbit spaces $2^K/G$ and cc(K)/G are homeomorphic to Q.

Let K be a Keller compactum. A point $x_0 \in K$ is called a **center of symmetry**, if for every $x \in K$, there is a point $y \in K$ such that

$$x_0=(x+y)/2.$$

If K admits a center of symmetry, then it is called **centrally** symmetric.

 x_0

Let K be a Keller compactum. A point $x_0 \in K$ is called a **center** of symmetry, if for every $x \in K$, there is a point $y \in K$ such that

$$x_0=(x+y)/2.$$

If *K* admits a center of symmetry, then it is called **centrally symmetric**.

Let K be a Keller compactum. A point $x_0 \in K$ is called a **center of symmetry**, if for every $x \in K$, there is a point $y \in K$ such that

$$x_0=(x+y)/2.$$

If K admits a center of symmetry, then it is called **centrally** symmetric.

Let K be a Keller compactum. A point $x_0 \in K$ is called **radially internal** if for every $x \in K$

$$\inf_{t \in \mathbb{R}} \{ |t| \mid x_0 + t(x - x_0) \notin K \} > 0.$$

Ŭ

 x_0

Let K be a Keller compactum. A point $x_0 \in K$ is called **radially internal** if for every $x \in K$

$$\inf_{t \in \mathbb{R}} \{ |t| \mid x_0 + t(x - x_0) \notin K \} > 0.$$

Let K be a Keller compactum. A point $x_0 \in K$ is called **radially internal** if for every $x \in K$

$$\inf_{t \in \mathbb{R}} \{ |t| \mid x_0 + t(x - x_0) \notin K \} > 0.$$

$$\exists t_1 < 0, \quad y = x_0 + t_1(x - x_0) \in K,$$

The **radial interior** of K is the set

rint
$$K = \{x \in K \mid x \text{ is radially internal}\}.$$

The **radial boundary** of K is the complement

$$rbd\ K = K \backslash rint\ K$$
.

The **radial interior** of *K* is the set

rint
$$K = \{x \in K \mid x \text{ is radially internal}\}.$$

The **radial boundary** of K is the complement

$$rbd\ K = K \backslash rint\ K$$
.

PROPOSITION

Let K and V be Keller compacta and $h: K \to V$ and affine homeomorphism. Then $h(rint \ K) = rint \ V$.

The space of probability measures P([0,1]) of [0,1] is a Keller compactum with

rint
$$P([0,1]) = \emptyset$$
.

Since

$$rint \ Q = \{ x \in Q \mid \sup_{n \in \mathbb{N}} |x_n| < 1 \} \neq \emptyset$$

P([0,1]) cannot be affinely-homeomorphic to Q.

Let (X,d) be a metric G-space. If for every $x,y\in X$ and $g\in G$,

$$d(gx,gy)=d(x,y),$$

then we say that d is an **invariant metric** and that the action of G is **isometric**.

Let (X,d) be a metric G-space. If for every $x,y\in X$ and $g\in G$,

$$d(gx,gy)=d(x,y),$$

then we say that d is an **invariant metric** and that the action of G is **isometric**.

If G is compact, then every metric G-space X admits an invariant metric d. In this situation, d induces a metric in the orbit space X/G:

$$d^*(Gx,Gy) = \inf\{d(gx,g'y) \mid g,g' \in G\}.$$

A metrizable G-space $X \in G$ -ANR, if for every metrizable G-space Y containing X as a closed invariant subset, there is an invariant neighborhood U of X in Y and a G-retraction $r: U \to X$.

If we can always take U = Y, then we say that $X \in \mathbf{G}\text{-}\mathbf{AR}$.

Y

A metrizable G-space $X \in G$ -ANR, if for every metrizable G-space Y containing X as a closed invariant subset, there is an invariant neighborhood U of X in Y and a G-retraction $r: U \to X$.

If we can always take U = Y, then we say that $X \in \mathbf{G}\text{-}\mathbf{A}\mathbf{R}$.

A metrizable G-space $X \in G$ -ANR, if for every metrizable G-space Y containing X as a closed invariant subset, there is an invariant neighborhood U of X in Y and a G-retraction $r: U \to X$.

If we can always take U = Y, then we say that $X \in \mathbf{G}\text{-}\mathbf{A}\mathbf{R}$.

THEOREM (S. ANTONYAN)

Let G be a compact group and $X \in G$ -ANR (resp., G-AR). Then the orbit space $X/G \in ANR$ (resp., AR).

THEOREM (S. ANTONYAN)

Let G be a compact group and X a completely metrizable locally connected G-space. Then 2^X is a G-ANR. If, in addition, X is connected, then 2^X is a G-AR.

A **Q-manifold** is a separable metrizable space that is locally homeomorphic to the Hilbert cube Q.

TEOREMA (H. TORUŃCZYK)

A locally compact ANR X is a Q-manifold if and only if for every $\epsilon > 0$ there exist continuous maps $f_1, f_2 : X \to X$ such that $d(f_1, 1_X) < \epsilon$, $d(f_2, 1_X) < \epsilon$ and $im(f_1) \cap im(f_2) = \emptyset$.

RESULT

Sketch of the proof:

The orbit space cc(K)/G is a compact AR. Let $\epsilon > 0$ and x_0 the center of symmetry. We construct equivariant maps

$$f_1: cc(K) \rightarrow cc(K)$$
 and $f_2: cc(K) \rightarrow cc(K)$

 $\epsilon\text{-close}$ to the identity map $\mathbf{1}_{cc(K)}$ such that

$$im f_1 \subset rint K$$
 and $im f_2 \cap rbd K \neq \emptyset$.

Indeed,

$$f_1(A) = x_0 + t(A - x_0), \qquad A \in cc(K), \qquad t \in (1 - \epsilon, 1)$$

$$f_2(A) = \{x \in K \mid d(x, A) \le \epsilon\}, \qquad A \in cc(K).$$

Then f_1 and f_2 induce continuous maps

$$\widetilde{f_1}: cc(K)/G
ightarrow cc(K)/G$$
 and $\widetilde{f_2}: cc(K)/G
ightarrow cc(K)/G$

also satisfying the properties of Toruńczyk's Theorem.

THEOREM

Let G be a compact group acting affinely on a Keller compactum K. If there is a G-fixed point $x_0 \in rint\ K$, then the orbit spaces $2^K/G$ and cc(K)/G are homeomorphic to the Hilbert cube Q.

THE END