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p-adic POLYHEDRA AND p-adic ACTIONS 

Louis F. McAuley 

1. Introduction 

The characterization of light open mappings given in [1] 

involves a sequence {C } of closed coverings of X with variousi
 

properties. Among these is the property that for each i, C
i 

is partitioned into collections C~ which are pairwise disjoint. 

In [2], we were concerned with a sequence {C } of coverings ofi 

a compact metric space X where each C~ consists of 2i pairwise 

. disjoint closed sets with certain topological properties. 

These were necessary and sufficient for the existence of free 

action by a dyadic group on X. We defined dyadic polyhedra in 

[2] and used certain inverse systems of such polyhedra. Here, 

we generalize the concept to include p-adic polyhedra. We also 

show that these may be used to generate p-adic actions. 

2. p-adic Polyhedra 

We say that P is a p-adic n-poZyhedron, where each of p 

and n is a positive integer, if and only if P is a polyhedron 

whose vertices can be partitioned into n+l pairwise disjoint 

sets v ,V ,···,V + consisting of either exactly p points or aI 2 n 1
 

singleton with not all sets being singletons such that (1) no
 

two points in Vk are connected by an interval (I-simplex), (2)
 

given two sets V. and V. such that a point in V . is joined to
 
1 J 1
 

a point in V. by a I-simplex, then each point of V. is joined

J 1 

to each point of V. by a I-simplex, i.e., the join V. * V. lies 
J 1 J
 

in P, and (3) if aa (a l ,a2 ,···,a ) and as (b ,b2 ,···,
k + l l
 

are the boundaries of two k-simplexes in P such that a and
i
 

belong to the same set Vi of
 

in P iff S lies in P. Such a partitioning of V is said to be
 

whiah defines P.
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Lemma 1. A p-adic n-polygon admits a natural periodic 

homeomorphism of period p. 

Proof. By definition, the set of vertices V and P can be 

partitioned into sets V 'V2 '···'V + where at least one set,I n 1 

say VI' contains exactly p points. Order these points as 

xO,xl,···x _ Define h(x ) = h(x + ) with addition mod p.l . 

Now, define h similarly for each Vi which contains p points. 

If V is a singleton {x}, then let h(x) x. Clearly, h can 

p s s l 

j 

be extended linearly to all I-simplexes in P. Suppose that h 

is defined on an where n = (a
O
,a

l 
,a ) - a 2-simplex in P. Con­2 

sider B = (bO,b ,b2 ) where h(ai ) = b · If a E Vi' then V ' l i i O 

VI' and V are three (different) members of the partitioning of
2 

V. Now, b E Vi' consequently, S contains three vertices.i 

Since the various I-simplexes in an are in P, it follows from 

(2) of the definition of P that as is in P. From (3) of the 

same definition, it follows that B lies in P. Now, h can be 

extended linearly taking a onto B. An induction yields that 

h can be extended linearly to all of P. It should be clear that 

h is a periodic homeomorphism with period p. 

A p-adic n-polyhedron is strongly connected if and only 

if for a E Vi and b E Vj ' i ~ j, where VI 'V2 '···'V +1 is a n 

partitioning of the set V of vertices of P which defines P, 

then a is joined to b in P with a I-simplex. 

Lemma 2. Suppose that P is a strongly connected p-adic 

n-polyhedron, Q is a strongly connected p-adic m-polyhedron and 

~ is a simplicial mapping of Ponto Q. Furthermore, let 

vertices of P and Q. If a,b E Vi' then ~ (a),~ (b) E U .. 
] 

Proof· This is obvious since if ~(a) E and ~ (b) E U
j

,Uk 

k -:F j , then a I-simplex a joins ~(a) to ~(b) in Q. Since ~ 

is simplicial, some simplex S in P with a,b E a maps onto n 
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under ¢. This implies that a is joined to b in P with a 1­

simplex which contradicts the fact that P is a p-adic n-poly­

hedron. 

3. Proper Inverse Systems of p-adic ni -polyhedra 

We say that an inverse system {Pi'¢i} of p-adic ni-polyhedra 

Pi with simplicial bonding maps ¢i:Pi+l ~ Pi is a proper inverse 

system iff the partitionings of the vertices V and V definingk +l k 

P + and P respectively, are such that if Vi is an element of
k

,k l m 
the partitioning of V and a,b E Vi' then ¢k

-1 
(a) U U and

k j=l Sj-1 m 
¢k (b) = .U U . such that (1) each of Us. and Ute fort

J=l J J J_ 
j = 1,2,···,m is an element of the partitioning of Vk + whichl 

defines Pk + and (2) if Vi is not a singleton, then each ofl 

U and Ut. is not a singleton (each consists of exactly p 
Sj J 

points). That is, if V. is not a singleton, then ¢-l(a), for 
1 

each a E Vi' is the union of a fixed number m of elements of 

the "defining partition" of V
k

+ We shall use this restrictionl . 

to define p-adic actions on the inverse limit. Perhaps, a 

weaker restriction could be imposed, but an uncomplicated one 

has not corne to our attention. 

Lemma 3. Suppose that {Pi'¢i} is a proper inverse system 

of p-adic ni-polyhedra. Furthermore~ for each i~ f i is the 

natural periodic homeomorphism of Pi onto itself of period p 

(Lemma 1). Then ¢ifi+l = ¢i and there is a periodic homeo­

morphism gk of Pk onto itself of period pk such that ¢kgk = 

gk-l¢k· 

Proof· It should be clear from the definition of f. and 
1 

the fact that {Pi'¢i} is proper that ¢ifi+l = ¢i. 

Now, the sets of vertices V and U of P and PI' respectively,2 

are partitioned into sets Vl'V2'···'Vn2+l and Ul'U2'···'Unl+l 

which define P 2 and Pl· If Us is not a singleton, then 

Us = xO,xl,···,x _ where xi ~ for i ~ j. The elements of p l x j 
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-1 m 
the partition of V can be labelled so that ~l (x j ) U VJ'n' 

n=l 
m fixed for all j. Also, each V, consists of exactly p points

In 
j j j{x ,x ,.·.,x }. We also say that the points in Us and V,
nO nl p-l In 

are labelled so that fl(x i ) = x i + l (mod p) and f2(X~i) 
, , '+1 

x~i+l (mod p). Next, define g2(x~i) = x~i for j < p - 1, 

g2(x~~1) = X~i+l for i < p - 1, and g2(X~;:1) = X~o· If Us is 

a singleton {x}, then let g2(y) f 2 (y) for each y E ~l 
-1 

(x). 

Extend gl linearly to the rest of P2 · It follows that ~lg2 = 

fl~k· Furthermore, g2 is a periodic homeomorphism of P ontok 

P of period p2. Let gl = fl·k
 

Now, consider the partition W 'W2 '···'W of the set of
l nk 
vertices W of P which defines P As before, if Us is not a3 . 

singleton, then Us = {xO,xl,x2,···,xp_l} exactly p different 

points. Note that (~1~2)-1(xi) is the union of a fixed number 

t of elements of the partition of W which defines P each of 

3 

3 

which consists of exactly p points. In a manner similar to 

that used in defining g2' we define g3 which is a periodic 

homeomorphism of P onto P which has period p3. Also,
3 3 

~3g3 = g2~3· By induction, we define gk which is a periodic 

homeomorphism of Pk onto Pk with period pk such that ~kgk = 

gk-l~k· 

4.	 Inverse Limits of Proper Inverse Systems of p-adic 

Polyhedra Admit p-adic Actions 

In this section, we provide a theorem which illustrates 

one use of p-adic polyhedra. It is easy to construct p-adic 

polyhedra and inverse systems of such polyhedra. See [2] for 

constructions of dyadic polyhedra and proper inverse systems. 

The techniques are applicable to constructions of p-adic poly­

hedra. 

Theorem. Suppose that {Pi'~i} is a proper inverse system 

of p-adic ni-polyhedra. Furthermore, for each i, t i is the 
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natural periodic homeomorphism of Pi onto itself of period p. 

Then there is an action by a p-adic group (homeomorphisms) on 

the inverse limit X = lim P .. 
+-	 1 

Proof. By Lemma 3, there is a sequence {gil such that for 

each i, gi is a periodic homeomorphism of Pi onto Pi of period 

pi and ¢igi = gi-l¢i Thus, G lim Gi where Giis the cyclico	 p 
2 p

group of homeomorphisms generated by gi (i.e., gi,gi,···,gi'···' 
i 

gP id). The homeomorphisms 8 :G ~ G for i > 1 are de-
i

­i i l 

fined in the obvious manner by 8(gi) That is, 

k k(mod pi-I)
8(gi) gi-l Thus, G is a p-adic group. An action p 

by G on X is given as follows: If x = (x
l

,x ,···) and g E G p 2 p 

where g = (a l ,a2 ,···), then g(x) = (a (x ),a (x ),···). Thisl l 2 2

is, of course, the usual way that such actions are defined on 

inverse limits. 

We proved in [2] that a necessary and sufficient condition 

that a dyadic group act (freely) on a compact metric space X is 

that there exist a sequence {C } of coverings of X such that
i 

the (a) the inverse system {N(Ci ) '¢i} where N(C ) is the nervei 

of Ci be a proper inverse system of (strict) dyadic ni-polyhedra 

and (b) X = lim Pi. A similar theorem should hold true for p-adic 

actions on such spaces X. In fact, a proof should mimic the one 

for the dyadic case. 

nQuestions. Is it possible to obtain an n-manifold M as 

the inverse limit of a proper inverse system of p-adic ni-poly­

hedra? Could such an inverse limit be an ANR? Just how "nice" 

can such an inverse limit be? 
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