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A COLLECTIONWISE NORMAL WEAKLY e~REFINABLE 

DOWKER SPACE WHICH IS NEITHER IRREDUCIBLE 

NOR REALCOMPACT 

Peter de Caux 

1.	 Introduction 

The concept of irreducibility was first used by Arens and 

Dugundji. [1]. Wicke and Worrell [8] introduced e-refinability 

as a generalization of paracompactness and observed that e­

refinable spaces are irreducible. Lutzer [6] introduced weak 

0-refinable and_Boone [2] raised the question: Is every 

weakly 8-refinable space irreducible? An answer to this 

question is given by van Douwen and Wicke [3] who construct 

without any unusual set theoretic assumptions a regular weakly 

0-refinable space which is neither irreducible nor normal. Our 

construction is the result of trying to find a normal weakly 

0-refinable space which is not irreducible. We have so far 

been unable to do so without +. We are grateful to Professor 

Robert L. Blair for asking if our space is realcompact. Gardner 

[4] ~as shown that if X is a normal weakly e-refinable countably 

paracompact space such that the cardinality of'each discrete 

subspace is of measure zero then X is realcompact. Our example 

shows that countable paracompactness cannot be dropped from the 

hypothesis in this statement. 

I would like to thank my research supervisor, Professor 

Jack W. Rogers, Jr., for many helpful discussions. 

2.	 Construction 

Axiom T is assumed, N denotes the set of positive integers, 

wI denotes the set of countable ordinals with their usual order 

topology and A denotes the set of limit ordinals in wI. If H 

is a collection of sets then H* denotes the union of all of the 
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elements of H. A collection M of t~o-element subsets of wI is 

increasing provided that for_each two sets in M, each element of 

one of ~hese two sets precedes each element of the other set. 

If· B is an infinite set then the expression A is almost all of 

B means that A is a subset of B,and that there do not exist 

infinitely many elements of B which are not in A. For each n 

in N, L(n) denotes wlx{n} and L(n) is referred to as level n. 

If m and n are in N then level m is below level n only if m is 

less than n. If p.and q are two points in wlx N then p is below 

q only if the level which contains p is below the level which 

contains q and p precedes q only if the first coordinate of p 

precedes the first coordinate of q. 

Lemma 1. There is a function T such that (1) the dbmain of 

T is A, (2} if A is in A then T(A) is an infinite subset of the 

p~edeces80rs of A and T(A) has only A as a limit point in WI and 

(3) if M is an uncountable increasing collection of two-element 

subsets of WI then there is a 0 in A such that if X is almost 

all of T(o) then some set in M is a subset of x. 
Proof of Lemma 1. Let f denote a one-to-one function whose 

domain is WI and whose range is the set of all two-element sub­

sets of WI. Using + let C denote a function such that (1) the 

domain of C is A, (2) if A i~ in A then C(A) is an infinite 

subset of the predecessors of A and C(A) has only A as a limit 

point in WI and (3) if B is an uncountable subset of WI then 

for some Ain A, C(A) is a subset of B. Let r denote the set 

of all A in A such that f(C(A» is increasing. That r is un­

countable follows from the fact that if a belongs to WI then 

there is an uncountable subset H of WI such that f(H) is in­

creasing and each element of H follows a. Let 9 denote the 

function with domain r such that for each A in r, g(A) is the 

first limit point of f(C(A»* in WI. Further, for each A in t, 
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using the fact that f(C(A» is increasing, let C' (A) denote a 

subset of C(A) such that fCC' (A»· is an infinite subset of the 

predecessors of g(A) which has only g(A) as a limit point and 

let K(A) denote the subset of r' to which a point a belongs only 

if g(a) is g(A). Define r' to be the set of all a in r such 

that if 6 precedes a in r then g(6) is not g(a). Restricted to 

r', g is one-to-one. 

For each A in r', K(A) is a countable set. To see this 

suppose that A is in r'. Denote by P the set of all two ele­

ment subsets of the set of all predecessors of g(A) and let 6 

denote the first element in wI which is preceded by each point 

in f-l(p). Suppose that 6 precedes y in r'. Then almost all 

of C' (y) is preceded by 6 and at most a finite number of two-

element subsets of P are in fCC' (y». Consequently fCC' (y». 

contains at most finitely many predecessors of g(A) and y is 

not in K(A). It has bee"n shown that e cannot precede any 

point in K(A) and this establishes that K(A) is a countable 

set. 

Using this result there is a function C" defined on rand 

there is a function Q defined on r' such that for each A in r' 

and a in K(A), C"(a) is almost all of C' la) and Q(A) is the 

set 

{f(C"(a»*la E K(l)}* 

which has only g(A) as a limit point in wI. 

Now denote by T a function domain A such that (1) if for 

some A in A, 0 isg(A), then T(o) is Q(A) and (2) if 0 is in 

A but not in g(A), then T(o) is an arbitrary infinite subset of 

the set of predecessors of 0 which has only 6 as a limit point 

in wI. 

T satisfies statements (1) and (2) of this lemma. To see 

that T satisfies statement (3) of this lemma, suppose that M 

is an uncountable increasing collection of two-element subsets 
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of wI. There is an a. in A such that C(a.) is a subset of f-l(M). 

It follows that f(C(a.» is an infinite subset of M which must 

be increasing since M is. Thus a. is in f and there is a A in 

f' such that a. is in K(A). Let 0 denote g(A) and suppose that 

X is almost all of T(o). T(o) is Q(A) so X contains almost all 

of f(C"(a.»* artd since f(C"(a.» is an infinite increasing sub­

set of M, X contains both elements of infinitely many two-element 

sets in M. Hence T satisfies statement (3) of this lemma, and 

Lemma 1 is proved. 

Let T denote a function which satisfies statements (1), 

(2) and (3) o£ Lemma 1. 

Lemma 2. Thepe is a function D such that (1) the domain 

of D is A x A, (2) if each of a. and y is in A then D(a.,y) is 

almost all of T(a.), (3) if a. ppecedes B in A and B ppecedes y 

in A then no two of D(a.,y), D(B,y) and D(y,y) intepsect and 

(4) if y ppecedes 0 in A then y ppecedes each point in D(o,y). 

ppoof of Lemma 2. For each y in A define D(y,y) to be 

T(y) and let t denote a one-to-one function such that (1) the 

domain of t is some initial segment of N, (2) the range of t is 

the set of all points in A which are not preceded by y and (3) 

t(l) is y. For each a. preceding y in A define D(a.,y) to be 

almost all of T(a.) such that if n is in Nand n is less than,. 

t-l(a.), then D(a.,y) does not intersect D(t(n) ,y). For each y 

preceding 0 in A define D(o,y) to be the set of all points in 

T(o) which a~ preceded by y. The function D which has just 

been defined satisfies statements (1), (2), (3) and (4) of the 

lemma, and Lemma 2 is proved. 

Let D denote a function which satisfies statements (1) 

through (4) of Lemma 2. 

For each y in A and for each n in N, a level n y-pegion is 
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defined inductively as follows: R is a levelly-region only 

if R is a degenerate subset of level 1; R is a level n+l y~ 

region only if either R is a degenerate subset of level n+l and 

the point in R does not have a first coordinate in A or each of 

the following four statements holds: (1) there is a point p in 

level n+l and the first coordinate a of p is in A, (2) there is 

an X which is almost all of D(a,y), (3) for each x in X there 

is a level ny-region R which contains the point (x,n) and x 

(4) R is the set to which a point q belongs if and only if q 

is p or for some x in X, q is in R . x 

Lemma 3. If each of y and 0 is in A, n is in Nand R is a 

level n y-~egion then (1) the~e is only one point p of level 

n which is in R, (2) each point of R different from p lies in a 

level n-l y-~egion which is a subset of R, (3) each point of R 

diffe~ent: f~om p p~ecedes p and is below p (f~om whiah it fol­

lows that R is countable) and (4) the~e is a level n o-~egion 

which contains p, is a subset c.;f R and is also a level n y-~egion. 

P~oof of Lemma 3. If in the statement of this lemma n is 

replaced by 1 then a true statement results. Suppose that the 

statement is true when n is replaced by n-l and that n is greater 

than 1. Let each of y and 0 denote an element of A and let R 

denote a level ny-region. The statement is clearly true if R 

is degenerate, and if R is not degenerate then there is some 

point p in level n whose first coordinate a is in A, there is an 

X which is almost all of D(a,y), for each x in X there is a 

level n-l y-region R which contains the point (x,n-l) and R is x 
the set to which a point q belongs if and only if q is p or for 

some x in X q is in R • If x is in X and q is a point in R x x 

then q is in level n-l or in a level below level n-l. It fol­

lows that p is the only point of R in level n, that each point 

of R different from p lies in a level n-l y~region which is a 
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subset of R and that each point in R different from p is below 

p. Suppose that q is a point of R different from p. Then for 

some x in X the first coordinate of q is x o~ precedes x. Since 

X is a subset of D(a,y), x is in T(a) and x precedes a. It 

follows that q precedes p and that statements (1), (2) and (3) 

of the lemma are true. 

Finally, define X' to be the common part of X and D(a,a) 

and for each x in X' let R~ denote a level n-l a-region contain­

ing (x,n-l) which lies in R and which is also a level n-l y­x 

region.. Define R' to be the set to which a point q belonqs if 

and only if q is p or for some x in X', q is in R~. X' is al­

most all of D(a,y) and X' is almost all of D(a,a). It follows 

that R' is a subset of R which contains p and is both a level 

ny-region and a level n a-region. Statement (4) of this 

lemma is consequently true and Lemma 3 follows by induction. 

If Y is in A, n is in Nand R is a level ny-region, then 

the aentep of R is the point p of R which is in level nand R 

is called a y-pegion centeped at p or simply a y-pegion or pegion. 

Lemma 4. The set of pegions is a basis fop the topology 

of a space S on wI XN. 

ppoof of Lemma 4. For each point' p of S let B denote thep 

set of all regions centered at p and notice that statements (1) , 

(2) and (3) which follow hold true. (1) If P is in S and each 

of Rand R' is in B ' then there is an R" in B which is a sub­p p 

set both of Rand R'. This follows by induction on the level 

of p, using Lemma 3. (2) If P is in S then p is in each region 

which is in' B . (3) If P is in S and q is in a region R which p 

is in BpI then some region in Bq is a subset of R. These last 

two statements follow directly from definitions and Lemma 3. 

Lemma 4 follows from statements (1), (2), (3) and Theorem 4.5 

of [9]. 
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Lemma 5. If Y is in A and neither of two y-regions con­

tains the other's center and y does not precede the first co­

ordinate of the center of at least one of these two regions~ 

then the two regions do not intersect. 

Proof of Lemma 5. It follows from (3) and (4) in Lemma 2 

that if a and S are two points in A and y is a point in A which 

does not precede both a and S then D(a,y) and D(S,y) do not 

intersect. Using this fact, the following claim is easily 

established by induction on the level containing p and q: If 

p and q are two points in the same level of S, y is in A and 

y does not precede both the first coordinate of p and the first 

coordinate of q, then no y-region centered at p intersects any 

y-region centered at q. Suppose that Lemma 5 holds for each two 

y-regions whose centers are below level n but fails for some 

y-region R with center p in level m less than or equal to n 
p 

having first coordinate a and for some y-region R with center q 

q in level n having first coordinate S. Then Rand R intersect p q 

but neither contains the center of the other. From the above 

claim, m is less than n. Now, (1) there is an X which is almost 

all of D(S,y} and (2) for each x in X there is a y-region R x 

centered at (x,n-l), such that R is the set to which a pointq 

r belongs if and only if r is q or, for some x in X, r is in R • x 

Suppose that x is in X. By conditions (1) and (3) of Lemma 3, 

since x is not p and since x is not below p, x is not in R .
P 

P is not in R and y does not precede at least one of a and x. x 

Since x and q are both below level n it follows that R does x 

not intersect R for each x in X. Thus R does not intersect 
p q 

R . This contradiction proves Lemma 5. p 

Lemma 6. S is Tl and there is a basis for S which consists 

of regions each of which is both open and closed in s. 

Proof of Lemma 6. The following claim follows directly by 
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induction on the level of q: If p and q are two points in Sand 

a is in A then some a-region centered at q does not contain p. 

Let B be the set to which a region R of S belongs if and only 

if there is a point p in S and there is a a in wI which does 

not precede the first coordinate of p and R is a a-region cen­

tered at p. Lemma 4 and (4) of Lemma 3 ensures that B is a 

basis for S and it follows from the above claim and Lemma 5 

that the regions in B are closed. Lemma 6 is proved. 

Lemma 7. If M is an uncountable subset of some level of 

S then each highep level contains uncountably many limit points 

of M. Hence S is wI-compact. 

ppoof of Lemma 7. This Lemma follows quickly from the 

following claim: If M is an uncountable subset of level n, and 

a is in wI' then M has a limit point in level n+l whose first 

coordinate follows a. To prove this claim let M' denote the 

set of all points of M whos~ first coordinate follows a. By 

Lemma 1 there is a A in A such that if X is almost all of T(A) , 

then X x {n} contains a point of M'. Let p denote the point 

(A,n+l) and suppose that R is a region centered at p. Clearly 

the first coordinate of p follows a. R contains almost all of 

T(A)x{n} and consequently R contains a point of M'. It follows 

that p is a limit point of M' and hence of M. The claim is 

proved. 

Lemma 8. S is weakly 8-pefinable but not ippeducible. 

ppoof of Lemma 8. Using Lemma 3 (1), each level L of S 

can be covered in a one-to-one fashion by a set of regions 

centered in L which refines any other open cover of L. It 

follows from this that S is weakly 8-refinable. S is an un­

countable space with a basis of countable regions. By Lemma 7 

S is wI-compact. It follows that S cannot be irreducible and 

Lemma 8 is proved. 
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Lemma 9. S is collectionwise normal. 

Proof of Lemma 9. Suppose for the sake of contradiction 

that Hand K are two uncountable closed subsets of S which do 

not intersect. By Lemma 7 there is an n in N such that both H 

and K have uncountably many points in level n. There is an 

increasing uncountable set M of two-element subsets of wI such 

that if a precedes S in one of these two-element subsets then 

(a,n) is in Hand (S,n) is in K. By Lemma 1 there is a A in A 

such that if X is almost all of T(A)x{n}, p is a limit point both 

of H and of K. This contradiction implies that uncountable 

closed sets in S intersect. 

Suppose that H ~nd K are two closed sets in S which do not 

intersect and suppose that H is countable. Let A denote a 

point in A which follows the first coordinate of each point in 

H. For each point in H choose a A-region centered there which 

does not intersect K and let 0H denote the open set which is 

their union. Similarly, for each point in K choose a A-region 

centered there which does not intersect H and let OK denote the 

open set which is their union. 0H contains H and OK contains 

K. By Lemma 5, 0H does not intersect OK. It follows that S is 

normal. By Lemma 7 S is wI-compact. Thus S is collectionwise 

normal and Lemma 9 is proved. 

Lemma 10. S is neither'aountably metaaompaat nor realcompaat. 

Proof of Lemma 10. Let ° be the countable open cover of S 

to which an open set V belongs only if for some level L in S, 

V is the union of all regions centered in L. Notice that each 

element of ° intersects only a finite number of levels in S. 

Suppose for the sake of contradiction that C is a point-finite 

°
refinement of which covers S. Then for each point p in the 

bottom level of S there is an n(p) in N such that if R is an 

open set in C which contains p then R does not intersect level 
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n(p). There is a k in N and an uncountable subset M of the 

bottom level in S such that if p is in M then n(p) is k. By 

Lemma 7 there is a limit point q of M in level k. There is an 

open set W in C which contains q. W contains a point of M and 

a point in level k. This contradiction proves that no refine­

ment of 0 can be a point finite open cover of S. It follows 

that S is not countably metacompact. 

Let F denote the set of all sets F A" where for each A in 

A, FA is the set of all points in S whose first coordinate 

follows A. By Lemma 3 (3) each element of F is a closed set. 

Since each element of F has a countable complement in S, each 

such element is a closed Go set. Let G be the set of all closed 

Go sets in S which contain an element of F. G is a z-filter on 

S. As already observed in the proof of Le~a 9, there do not 

exist two uncountable closed subsets of S which do not inter­

sect. It follows that each uncountable closed Go subset of S 

is in G and that G is a z-ultrafilter on S. Since G has the 

countable intersection property, G is a real z-ultrafilter. But 

no point is common to the elements of G so G is not fixed and by 

8.1 of [5], S is not realcompact. Lemma 10 is proved. 

The following Theorem is a direct consequence of the above 

lemmas: 

Theorem. S is a collectionwise normal weakly 0-refinable 

Dowker space which is neither irreducible nor realcompact. 

In [7] Proctor constructs a separable pseudonormal Moore 

space P which is the disjoint union of a countable set and a 

discrete set conumerous with wI. Let M(l), M(2), ••• be pair­

wise disjoint countably infinite sets whose union M has no 

point in S. A separable space T having all the properties of S 

listed in the above Theorem can be constructed by adding the 

points of M to S in such a way that S is a subspace of T and 
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for each n in N, the union of L(n) and M(n) is a copy of P. 
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