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SURVEY OF HYPERSPACE RESULTS USING 

INFINITE-DIMENSIONAL TOPOLOGY AND 

A SHORT PROOF THAT 2 I ~ Q 

R. M. Schori 

1. Introduction 

Since 1972 there has been a series of results in hyperspaces 

whose proofs have utilized and motivated many theorems from in­

finite-dimensional (ID) topology. We will give a summary of the 

hyperspace results, as well as the corresponding ID theorems and 

point out their interconnections. A recent result of T. A. 

Chapman characterizing near-homeomorphisms on the Hilbert cube 

and the solution of the AR Problem by R. D. Edwards imply sev­

eral of these ID theorems and consequently by applying the full 

power of these new results, many of the tedious verifications in 

the 21 ~ Q (I is the closed unit interval [0,1] and Q is the 

Hilbert cube) and 2graph ~ Q proofs can be eliminated; leaving 

the main structure	 of the proofs intact. In Section 4 we give 

1 a write-up of the 2 ~ Q proof using these new results. 

For a metric space X, let 2X denote the space of all non-

empty compact subsets of X metrized with the Hausdorff metric, 

and let C(X) denote the subspace of 2X consisting of all con­

nected elements of 2X. In 1938, Wojdyslawski [20] proved that 

if X is any Peano space (i.e., compact, connected, and locally 

Xconnected metric space) then 2 is contractible and locally 

contractible and later [21] that 2X is an absolute retract if 

and only if X is a Peano space. In his earlier paper he specifi ­

cally asked if 21 is homeomorphic to (~) the Hilbert cube Q, 

and, more generally, if 2X ~ Q where X is any non-degenerate 

Peano space. Classical point-set topology techniques yielded 

very little when applied to this problem and it remained virtually 
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intact until infinite-dimensional topology played a major role 

in its final solution. Interestingly enough, several of the now 

standard theorems and techniques of infinite-dimensional topology 

were motivated by this and other hyperspace problems. 

2. Historical Review of Hyperspace and ID Topology 

The first of the recent theorems involving hyperspaces and 

infinite-dimensional topology was the following. 

H1. (West [19]) If D is a dendron~ then C(D) ~ Q if and 

onZy if the branch points of D are dense. 

West already had proved that a contrac~ible polyhedron X 

is a Q-factor, that is, X x Q ~ Q (ID 4: these references refer 

to the theorems listed in Section 3 of this paper) and that the 

countable infinite product of non-degenerate Q-factors is a 

Hilbert cube (ID 2). Both of these theorems were used in the 

proof of HI, as well as two ID theorems that were motivated by, 

these hyperspace problems, namely the Mapping Cylinder Theorem 

(ID 6) and the Compactification Theorem (ID 9). West also 

used Brown's inverse limit approximation theorem (ID 11). 

The next theorem had been conjectured in 193~ by 

Wojdyslawski [20]. 

H2. (Schori and West [15]) 21 ~ Q. 

The proof of H2 used all of the above mentioned ID theorems 

except the Compactification Theorem and, in addition, used an 

inverse limit interior approximation technique. The Attaching 

Theorem (ID 7) was introduced to construct Q-factors, and Q­

factor decompositions and the corresponding near-homeomorphism 

theorem (ID 10) were introduced to establish that certain maps 

were near-homeomorphisms. As we see in Section 4 the use of 

the new results by Chapman (ID 5) and Edwards (ID 8) substantially 
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shortens the original proof. 

fH3. (Schori and West [16]) 2 ~ Q, where f is a 'non­

degenerate, finite, connected graph. 

1The above theorem used in addition to the 2 ~ Q result, 

the First Sum Theorem (ID 3), the Attaching Theorem (ID 7), 

and the Compactification Theorem (ID 9). In the same paper 

[16]	 it was also proved that if D is any non-degenerate local
 

D
dendron, then 2 ~ Q, C(D) is a Q-factor, and if the branch 

points of D are dense, then C(D) ~ Q. These results used an 

additional inverse limit construction and the full strength of 

the Mapping Cylinder Theorem (ID 6), i.e., the part that says 

that the projection map stabilizes to a near-homeomorphism. 

H4. (Curtis and Schori [8]) 2X ~ Q if and only if X is 

a non-degenerate Peano space and C(X) x Q ~ Q if and only if X 

is a Peano space and C(X) ~ Q if and only if X is a non-degener­

ate Peano space containing no free arc. 

The proof uses Theorem H3 in conjunction with a delicate 

inverse limit construction. In the case X is a polyhedron [7], 

a sequence {K	 } of subdivisions of X is inductively constructedi 

with each K i +1 a subdivision of K i and mesh K + 0, and mapsi 
f'+l f·

f.: 2 1 +2 1,	 where each f. is the I-skeleton of K. such that 
111 

fl fl f2 f2
the limit of the inverse sequence 2 + 2 + ••• is homeo-

X f'
morphic to 2. Each space 2 1 is a Hilbert cube by H3 and the 

fils were constructed so that inverse images of points are con­

tractible which by Chapman's theorem (ID 5) implies that each 

f is a near-homeomorphism. Thus, by Brown's theorem (ID 11)i
 
X
2 is a Hilbert cube. In the general case of X being a Peano 

space, a careful partitioning procedure of X is used, embedding 

trees in the partition members to construct the corresponding 

Xfi. The proofs for the C(X) results are adapted from the 2 case. 
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For a metric space X and A,A
l 

, ••• ,A E 2X, let 
n
 

X {X X X
2A = B E 2 : A C B} and 2 (AI'··· ,An) = {B E 2 : Ai n B ~ ~ 

for 1'::' i'::' n }. 

H5. (Curtis and Schori [8] and [9]) If X is a Peano space 

and A ~ X~ then 2~ ~ Q~ and if X is a non-degenerate Peano space~ 
Xthen 2 (AI'·· ·,A ) ~ Q.

n 

The first half of the theorem is proved in [8] and follows 

quite naturally from the proof of H4. The proof of the second 

part [9] required an added inverse limit interior approximation 

technique. Similar definitions and results exist for CA(X) and 

C(XiAl ,·· ·,A )·n 
XIf ffi is a closed cover of X, let 2ill = {A E 2 : for some 

D E ffi, A CD}. Let K be a non-degenerate finite connected 

complex and for i~l, let K(i) be the i-th barycentric subdivi­

sion of K and let KO be the O-skeleton of K. Then 

Stt = St(St(KO,K(1)),K(2)) 

is a closed cover of IKI whose nerve is isomorphic to K and whose 

interiors cover IKI. 

H6. (Curtis and Schori [9]) For non-degenerate~ finite 

connected complexes K~ L~ 

(a) 2 K 
~ K x Q,

Stt 

(b) K and L have the same simple homotopy type if and only 

The proof of part (a) uses HS and part (b) follows directly 

from part (a) using Chapman's characterization of simple 

homotopy type [3]. 

If X has an affine structure, we may consider the hyper­

space cc(X) C 2X of compact convex subsets of X. 

H? (Nadler ~ Quinn~ Stavrakas [13]) 
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(a) If X is a compact convex subset of £2 with dim X >l~ 

then	 cc (X):::; Q. 

2(b) If X C R with cc (X) ~ Q~ then X must be a 2-cell. 

If X C R2 is a 2-cell, a segment J c X is singular if it 

contains in its interior three vertices	 v l ,v2 ,v at which X is
3 

locally non-convex, such that the side of J determined by the 

middle vertex v	 is opposite that determined by vI and by v •2	 3 

HB. (Curtis~ Quinn~ Schori [6]) If X C R2 is a polyhedral 

2-cell~ then cc(X) ~ Q if and only if X contains no singular 

segments. 

A space is continuum connected if each pair of points in 

the space is contained in a subcontinuum of the space. A space 

is locally continuum connected if it has an open basis of con­

tinuum connected sets. 

H9. (Curtis [5]) 

(a) For a metric space X~ 2X is an AR (metric) ifand only 

if X is connected and locally continuum connected. 

(b) 2
X ~ Q - {pt.} if and only if X is a locally compact 

connected locally connected non-compact metric space. 

(c) A topologically complete separable connected locally 

connected	 and nowhere-locally compact metric space X is imbed­

Xdable in a Peano continuum P such that 2 is a pseudo-interior 

Pfor 2 if and only if X admits a metric	 with Property s. 

3. ID Theorems Used in Hyperspaces 

A closed set A of a compact metric space X is a z-set in 

X if for each c > 0 there is a map f: X -+ X - A such that 

d (f, id) < c . (This c-push definition of z-set was first used in 

hyperspaces. ) 

IV 1. Homeomorphism Extension Theorem (Anderson [1]). If 
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A,B are z-sets in Q and h: A ~ B is a homeomorphism, then h can 

be extended to a homeomorphism from Q onto itself. 

ID2. (West [17]). If X is a non-degenerate Q-factor,
 

then X
W 

~ Q.
 

ID3. First Sum Theorem (Anderson [1]). If each of Xl' 

X2 and Xl n X2 is a Q-factor, and Xl n X2 is a z-set in each of 

Xl and X2, then Xl U X2 is a Q-factor. 

ID4. (West [17]). Each contractible polyhedron is a 

Q-factor. 

By a CE-map we mean a continuous surject~on whose inverse 

images of points all have trivial shape. 

ID5. (Chapman [4]). CE-maps between Hilbert cubes are 

near-homeomorphisms. 

The above theorems are all ID theorems that have been used 

extensively in hyperspace results and the following theorems 

and techniques with the exception of (ID 8) have the added dis­

tinction that they were motivated by work on the hyperspace 

problems. 

ID6. Mapping Cylinder Theorem (West [18]). If X,Y are 

Q-factors and f: X ~ Y is a map, then the mapping cylinder of 

f, M(f) is a Q-factor and if c: M(f) ~ Y is the projection map, 

then c x id: M(f) x Q ~ Y x Q is a near-homeomorphism. 

ID 7. Attaching Theorem [15]. If each of A, X, and Yare 

Q-factors, A is a z-set in x, and f: A ~ Y is a map, then the 

adjunation space of f, X Uf Y is a Q-factor. 

The following theorem was proved in a more general setting 

but this sta~ement suffices here. Furthermore, this result or 
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the	 method of proof implies all of the theorems ID 3 - ID 7. 

ID 8. AH Problem (H. D. Edwards [10]). Each compact metric 

AR is a Q-factor. (See [4] for a write-up of this result.) 

ID 9. Compactification Theorem (West [19]). If X is a 

Q-factor J A C X is a Q-factor and a z-set in X~ and X - A is a 

Q-manifold~ then X is a Hilbert cube. 

The following definition and theorem were originally intro­

duced in the hyperspace studies [15] to identify near-homeo­

morphisms. 

A Q-factor decomposition ill of a space X is a finite cover 

of X by Q-factor subsets of X such that for Dl ,D
2 

E ill, (i) if 

¥ D , then D is a z-set in D , and (ii) if D n D t- ~,Dl 2 l 2 l 2 

then Dl 
n D

2 
is a finite union of elements of 9). 

ID 10. [15]. Let f: X ~ Y be a map such that for each 

E >0 there exists a Q-factor decomposition 9) of Y with mesh 

9) < E such that f-
l 

(g) is a Q-factor decomposition of X~ then 

f x id: X x Q ~ Y x Q is a near-homeomorphism. 

The following theorems are listed because they have become 

the main tools for identifying Hilbert cubes in hyperspace 

problems as well as in infinite-dimensional topology. 

ID 21. (Morton Brown [2]). Let S = inv lim(Xn,f ) where n 

each X is homeomorphic to a compact metric space X and each f 
n	 n 

is a near-homeomorphism~ then S is homeomorphic to X. 

ID 12. Inverse limit interior approximation theorem [7]. 

For each n ":'l~ let Y be a closed subset of a compact metric n 

space Y and let f : ~ Y be a map such that n Yn +l n 

(1)	 Y ~ Y (in 2Y)
n 

(2)	 I d (f ,id) < 00 ~ and
 
n=l n
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(3) {f. ••• 0 f.; j > i} is an equi-uniformly con tinuous 
1 

0
J ­

family for each i. 

4.	 Short Proof that 2 I ~ Q 

The proof that 21 
Z Q given here is basically the original 

proof where the powerful theorems of Chapman (ID 5) and Edwards 

(ID 8) eliminate the longest and most technical parts, that is, 

showing certain maps are near-homeomorphisms and certain spaces 

are Q-factors. 

The following lemma was first observed by Fort and Segal 

[11] and can be thought of as a special case of (ID 12). It 

provides a useful method for recognizing certain inverse limits. 

Lemma 4.1. [11 3 Lemma 4 3 p. 132]. Let X be a compact metric 

space 3 let x ,x ,··· be closed subsets of X3 and for each n'letl 2 

¢n be a map of X onto X and let f be a map of X + l onto X such n n n n 

that ¢n'= f 0 ¢n+l and ¢1'¢2'··· converges uniformly to then 

identity map on X. Then the function ¢ on X defined by ¢(x) 

(¢1(x)'¢2(x),···) is a homeomorphism of X onto inv lim(Xn,f ).n 

For SCI, let H(S) denote the space 2 I and denote H({O,l})S 

by H(O,l) which has often been denoted by 2~1. 

The first result says that it is sufficient to prove that 

H(O,l) ~ Q. 

Proposition 4.2. If H(O,l) is a Hilbert cube 3 then so is 

IProof. In [14] it is shown that 2 is homeomorphic to 

CCH(O,l), where CX denotes the cone over X. (The formula 

(A,s,t) ~ {(I - t) (1 - s)a + t: a E A} defines a map from 

IH(O,l) x I x I to 2 producing the same identifications as the 

coning operations.) o. H. Keller proved in [12] that all 

infinite-dimensional, convex compact subsets of Hilbert space 
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are Hilbert cubes, and since CQ has a geometric realization as 

such a subset of Hilbert space, then CQ and, hence, CCQ is a 

Hilbert cube and the result follows. 

Theorem 4.3. H(O,l) is a Q-factor. 

Proof. By [21], 21 is an AR and by showing that H(O,l) is 

a retract of 21 we will have that H(O,l) is an AR and, hence, by 

1 1(ID 8), H(O,l) is a Q-factor. Define f t : 2 -+ 2 , 0 ~t ~l, by 

letting ft(A) be the closed t-neighborhood of A in I and let 

1
¢(A) inf{t: ft(A) E H(O,l)}. Then r: 2 -+ H(O,l) defined by 

r(A) f¢(A) (A) is a retraction. 

For each n ~l, let a(n) = {O,l,l/n,l/n+l, ••• } and let 

Y H(a(n)).
n 

Corollary 4.4. Each Y is a Hilbert cube. 
n 

Proof· For a fixed n > 1, let J denote the m-th subinterval - m 

from the right determined by a(n), i.e., J = [l/n,l], J = 
l 2 

J m[l/n+l,l/n], etc., and let H = {A E 2 : A contains the end-
m 

points of J}. Then a: Y -+ n°O lH defined by a(A)
m n m= m 

(A n Jl,A n J 2 ,···) is a homeomorphism. Since each Hm is 

homeomorphic to H(O,l), then Y is topologically a countable n 

infinite product of copies of a non-degenerate Q-factor H(O,l) 

which by (ID 2) is a Hilbert cube. 

We define maps r : Y + -+ Y as follows. For A E Y + l ,n n l n n 

let u = max{x E A: x ~ lin} and v = min{x E A: x ~ lin}, and let 

a min{d: A U [u,u + d] U [v - d,v] E Y }. Then rn(A)
n 

A U [u,u + a] U [v - a,v]. Note that a = min{l/n - u,v - lin}. 

It is easy to see that each r is continuous and a retraction. n 

Proposition 4.5. The inverse limit of (Yn,r ) is homeo­n 

morphic to H(O,l). 

Proof. For x E I and B c I, let d(x,B) = inf{lx - bl: b E B} 

and for Uc I and n2:.l, let ~(u,n) = max{d(x,I - U): x E a(n)}. 
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Define R : H(O,l) + Y by letting Rn(A) be the union of A and n n
 

U{[u,u + ~(U,n)] U [v - ~(U,n) ,v]: U = (u,v) is a component of
 

I -	 A}. It easily follows that R = r R + by observing what n n 0 n l 

happens, for A E H(O,l), on the component of I - A that contains 

lin, if it exists. Thus, we can define R: H(O,l) + inv lim(Yn,r )n 

by R(A) = (R (A) ,R (A), ••• ) and this is a homeomorphism by 4.1
l 2 

since R ,R
2 

, ••• converges uniformly to the identity map on
l 

H (0, 1) • 

Theorem 4.6. 21 ~ Q. 

Proof. By (ID 11) and the above results all we need do is 

verify that each r : Y + + Y is a near-homeomorphism and this n n l n 

is reduced by (ID 5) to showing that each r is a CE-map. In n 

fact, not only is the inverse image under r of each point of n 

Y of trivial shape, but it is contractible. To see, this,
n 

using the notation introduced for defining r , we define n 

h t : Yn+l+Yn+lby ht(A) = A U [u,u + tal U [v - ta,v] obtaining 

a homotopy such that h O = id, hI = r , and rnht(A) = rn(A) for n 
-1

each t E I and A E Y +l . Thus, for B E Y , htlrn (B) is a con­n	 n 
-1	 -1

traction of r (B) to B since if A E r (B), then rnht(A) = rn(A)n	 n 
-1implies that ht(A) E r (B). Thus, point inverses under r are n n 

contractible and hence r is a near-homeomorphism and the proofn 

is complete. 
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