

http://topology.auburn.edu/tp/

IS $\Box^{\omega} (\omega + 1)$ PARACOMPACT?

by

SCOTT W. WILLIAMS

Topology Proceedings

Web:	http://topology.auburn.edu/tp/
Mail:	Topology Proceedings
	Department of Mathematics & Statistics
	Auburn University, Alabama 36849, USA
E-mail:	topolog@auburn.edu
ISSN:	0146-4124

COPYRIGHT © by Topology Proceedings. All rights reserved.

IS $\Box^{\omega}(\omega + 1)$ PARACOMPACT?

Scott W. Williams

If $\{x_n:\;n\in_\omega\}$ is a family of spaces, $\underset{n\in\omega}{\Box}x_n,$ called the box product of those spaces, denotes the Cartesian product of the sets with the topology generated by all sets of the form ${}^{\rm I}$ G $_n$, where G $_n$ need only be open in each factor space X $_n.$ If ${}^{n\in\omega}$ $X_n = X \forall n \in \omega$, we denote $\bigcup_{n \in \omega} X_n$ by $\bigcup^{\omega} X$.

Box products have generated considerable interest during the past ten years, as first as "counter-example producing machines," later, as mathematical objects in their own right.¹ Yet, except for a few surprising counter-examples there have been no non-trivial absolute results. As corollaries to more general results, M. E. Rudin and K. Kunen have proved that if the Continuum Hypothesis (CH) is assumed, then $\ \Box^{\omega}(\omega_1+1)$ is paracompact; however, in [6,8] they question what occurs when CH is false. Kunen [6] has proved that if Martin's Axiom (MA) is assumed, then $\underset{n\in\omega}{\square} \underset{n}{x}_{n}$ is paracompact whenever each x_{n} is compact first countable; however, as stated in [2], the really interesting case occurs when $\Box^{\omega}(\omega+1)$ when both CH and MA +]CH fail, as they do in the "random real" models of Solovay [10]. We prove:

Theorem 1: If $\Box^{\omega}(\alpha+1)$ is paracompact $\forall \alpha < \omega_1$, then $\Box^{\omega}(\omega_1+1)$ is paracompact.

Theorem 2: If there exists a λ -scale in ${}^{\omega}\omega$, then $\Box^{\omega}(\omega+1)$ is paracompact.

Suppose that for each $n \in \omega \ X_n$ is a set, then for each

¹"Box Products" is the title of Chapter X of [9] where all the results attributed by this author to others may be found, if not referenced here.

Proof of Theorem 1:

We suppose $\mathcal F$ is a basic open covering of $\nabla^\omega(\omega_1+1)$. For each $\alpha<\omega_1$ and A \subseteq ω define

 $A(\alpha)(n) = \begin{cases} [\alpha+1, \omega_1] & \text{if } n \in A \\ [0, \alpha] & \text{if } n \notin A, \end{cases}$

 $A(\alpha) = \prod A(\alpha)(n)$, and $\overline{A(\alpha)} = \{\overline{x} : x \in A(\alpha)\}$. The sets $\overline{A(\alpha)}$ are $n \in \omega$ clopen and form a partition of $\nabla^{\omega}(\omega_1 + 1)$ since $\overline{A(\alpha)} \neq \overline{B(\alpha)}$ iff $(A - B) \cup (B - A)$ is infinite.

We construct for each $\alpha < \omega_1$ a collection $\mathcal{F}(\alpha)$ satisfying (1) $G \in \mathcal{F}(\alpha) \implies G$ is clopen and contained in a member of \mathcal{F} , (2) $\cup \mathcal{F}(\alpha)$ is clopen and $\mathcal{F}(\alpha)$ is a pairwise disjoint collection,

(3) $\beta < \alpha < \omega_1 \implies \mathcal{F}(\beta) \subseteq \mathcal{F}(\alpha)$,

(4) U { $\mathcal{F}(\alpha): \alpha < \omega_1$ } is a cover of $\nabla^{\omega}(\omega_1+1)$.

There is a first $\lambda \in \omega_1$ such that $\overline{\omega(\lambda)}$ is contained in an element of \mathcal{F} , let $\mathcal{F}(\mathbf{0}) = \{\overline{\omega(\lambda)}\}$ and suppose that for $\alpha < \omega_1$ we have constructed $\mathcal{F}(\beta) \lor \beta < \alpha$ to satisfy (1), (2), and (3).

If $\boldsymbol{\alpha}$ is a limit ordinal, then let

 $\mathcal{F}(\alpha) = \bigcup \{ \mathcal{F}(\beta) : \beta < \alpha \}.$

If α is a non-limit ordinal, suppose $A \subseteq \omega$ and let

 $T(A) = \{\overline{y} \in \overline{A(\alpha)}: y^{-1}(\omega_1) = A\}.$

Since T(A) is homeomorphic to $\nabla^{\omega}(\alpha+1)^2$ we may find a pairwise disjoint basic open covering S(A) of T(A) to satisfy

(i) $\overline{W} \in \mathfrak{S}(A)$, n, m $\in A \implies \inf W(n) = \inf W(m)$ is a successor ordinal > α + 1.

(ii) $\overline{W} \in \mathfrak{S}(A) \implies \Im G \in \mathcal{F} \ni \overline{W} \subset G.$

By choosing only one representative A for each equivalence class $\overline{A\left(\,\alpha\right)}$, we let

 $\mathcal{F}(\alpha) = \mathcal{F}(\alpha-1) \cup \{\overline{W} - \cup \mathcal{F}(\alpha-1): \overline{W} \in \mathfrak{S}(A), A \subseteq \omega\}.$ In order to show $\mathcal{F}(\alpha)$ satisfies (1), (2), and (3) we need only show $\cup \mathfrak{S}(A)$ is closed for each $A \subset \omega$. So we suppose

> $\overline{\mathbf{x}} \in \overline{\mathbf{A}(\alpha)} - \bigcup \, \mathfrak{S}(\mathbf{A})$ and $\overline{\mathbf{y}} \in \mathbf{T}(\mathbf{A})$ such that $\mathbf{y}(\mathbf{n}) = - \begin{bmatrix} \mathbf{x}(\mathbf{n}) & \text{if } \mathbf{n} \notin \mathbf{A} \\ & - \begin{bmatrix} \mathbf{x}(\mathbf{n}) & \text{if } \mathbf{n} \in \mathbf{A}. \end{bmatrix}$

Now choose $\overline{W} \in \mathfrak{S}(A)$ such that $y \in W$ and define

$$V_{\mathbf{x}}(\mathbf{n}) = \begin{cases} W(\mathbf{n}) & \text{if } \mathbf{x}(\mathbf{n}) \in W(\mathbf{n}) \\ [\alpha+1, \inf W(\mathbf{n})) & \text{if } \mathbf{x}(\mathbf{n}) \notin W(\mathbf{n}). \end{cases}$$

From (i) $\overline{\mathbf{x}} \in \overline{\mathbf{V}}_{\mathbf{x}} \subseteq \overline{\mathbf{A}(\alpha)}$; moreover, if $\overline{\mathbf{U}} \in \mathfrak{S}(\mathbf{A})$ and $\overline{\mathbf{U}} \neq \overline{\mathbf{W}}$, then we may assume

 $(\ \Pi \ U(n) \ \cap \ (\ \Pi \ W(n)) = \emptyset.$ Thus, $\overline{U} \ \cap \ \overline{V}_{x} = \emptyset.$ Clearly, $\overline{A(\alpha)} - U \ \mathfrak{S}(A)$ is open and our induction is completed.

To see (4) we observe that $\overline{x} \in \nabla^{\omega}(\omega_1+1) \implies$ either $\overline{x} = \overline{\omega}_1$ or I a first $\alpha \ni$

 $\alpha > \sup\{x(n): x(n) \neq \omega_1\}.$

In the first case $\overline{x} \in \bigcup \mathcal{F}(0)$, and in the second case $\overline{x} \in \bigcup \mathcal{F}(\alpha)$. Therefore, our proof is complete.

If λ is an ordinal, a λ -scale in ${}^{\omega}\omega$ is an order-preserving injection $\Psi: \lambda \rightarrow {}^{\omega}\omega \ni$ given any $\mathbf{x} \in {}^{\omega}\omega \equiv \alpha < \lambda$ with $\mathbf{x}(n) < \Psi(\alpha)(n)$ for all but finitely many $n \in \omega$. It should be clear that there

²T(A) may actually be a singleton; however, this causes no disturbance.

can be no $\omega\text{-scales}$ in ${}^\omega\omega;$ however, it is a fact, probably due to Hausdorff, that

 $CH \implies$ I an ω_1 -scale in ω_{ω} .

However, in the random real models for \CH , with the ground model "satisfying" CH, there is an ω_1 -scale in ${}^{\omega}_{\omega}$ [4]. Booth's theorem [9, pg. 40] says

 $MA \Rightarrow \Xi a 2^{\omega}$ -scale in $^{\omega}\omega$.

In Cohen's original model for $\neg CH$ there is no λ -scale in ${}^{\omega}_{\omega}$. In [4] S. Hechler has shown that given cardinals λ and \aleph and a model M of ZFC in which

 $\omega < cf(\lambda) \leq \lambda \leq min(2^{\omega}, cf(\aleph))$

then one can "extend" M to a model N in which \aleph = 2 $^{\omega}$ and $^{\omega}{}_{\omega}$ has a $\lambda-\text{scale.}$

van Douwen [1] and Hechler [3] have examined a number of topological cardinal functions which are implied by or are equivalent to the existence of a λ -scale. Kunen [5] proved

(a) $\exists \lambda$ -scale in $\omega \implies \lambda x \square^{\omega}(\omega+1)$ is not normal,

(b) $\exists 2^{\omega}$ -scale in ${}^{\omega}\omega \Rightarrow \lambda x \Box^{\omega}(\omega+1)$ is normal for any ordinal λ such that $cf(\lambda) \neq 2^{\omega}$.

Recall [7] that a space Y is λ -metrizable for an ordinal λ , cf(λ) > ω , whenever each y \in Y has a local base {B(y, α): $\alpha < \lambda$ } satisfying

(i) $\beta < \alpha \implies B(y, \alpha) \subset B(y, \beta)$

(ii) $y \in B(z, \alpha) \implies z \in B(y, \alpha)$

(iii) $y \in B(z, \alpha) \implies B(y, \alpha) \subset B(z, \alpha)$.

It is well known that λ -metrizable spaces are paracompact.

Our original proof of Theorem 2, presented during this conference, was similar to the proof of Theorem 1 and made use of:

If there is a λ -scale in ${}^{\omega}\omega$, then the intersection of less than cf(λ) open sets of $\nabla^{\omega}(\omega+1)$ is open.

We give thanks to Brian Scott who has provided us with the "if" part of the Lemma from which our theorem 2 is immediate.

Proof of Theorem 2:

Lemma: Let λ be a regular cardinal. Then $\nabla^{\omega}(\omega+1)$ is λ -metrizable if, and only if, there is a λ -scale in ${}^{\omega}\omega$.

Proof: Suppose $\{B_{\alpha}: \alpha < \lambda\}$ is a well-ordered decreasing local base at $\overline{\omega}$. It is easy to find

 $\{G_{\alpha}: \alpha < \lambda\} \subseteq \{B_{\alpha}: \alpha < \lambda\} \text{ and } \{x_{\alpha}: \alpha < \lambda\} \subseteq {}^{\omega}_{\omega}.$ such that whenever $\alpha < \beta < \lambda$,

 $G_{\beta} \subseteq \overline{\prod_{n \in \omega} [\mathbf{x}_{\beta}(n), \omega]} \subseteq G_{\alpha}$, and $\{G_{\alpha}: \alpha < \lambda\}$ is a local base at $\overline{\omega}$.

If $\Psi(\alpha) = \mathbf{x}_{\alpha}$, then $\Psi: \lambda \rightarrow {}^{\omega}\omega$ is a λ -scale in ${}^{\omega}\omega$.

Conversely, suppose Ψ : $\lambda \rightarrow {}^{\omega}{}_{\omega}$ is a λ -scale in ${}^{\omega}{}_{\omega}$. For each $\overline{x} \in \nabla^{\omega}(\omega+1)$, let $d(\overline{x}, \overline{x}) = \lambda$, and if $\overline{y} \neq \overline{x}$, let

 $d(\overline{\mathbf{x}},\overline{\mathbf{y}}) = \inf\{\alpha < \lambda: | \{n \in \omega: \inf(\mathbf{x}(n), \mathbf{y}(n)) \leq \Psi(\alpha) (n) \}$ and $\mathbf{x}(n) \neq \mathbf{y}(n) \} = \omega \}.$

We see that d: $\nabla^{\omega}(\omega+1) \times \nabla^{\omega}(\omega+1) \rightarrow \lambda + 1$ satisfies the criterion of [7, Theorem 4.8(B)], and hence $\nabla^{\omega}(\omega+1)$ is λ -metrizable.

The previous lemma establishes that the λ -metrizability of $\nabla^{\omega}(\omega+1)$ is independent of the axioms of ZFC whenever $cf(\lambda) > \omega$. In answer to one of the questions we presented at this conference, Eric van Douwen has recently shown³ that $\nabla^{\omega}(\omega+1)$ in the previous lemma may be replaced by ∇X_n , whenever each X_n is a compact metrizable space. In answer to another of our questions, Judith Roitman has proved:

In a model of set theory which is an iterated CCC extension of length λ , cf(λ) > $\omega \Rightarrow \nabla X_n$ is paracompact if each X_n is regular and separable. Furthermore, if λ is regular and $\lambda \geq 2^{\omega}$ in the ground model, then ∇X_n is paracompact whenever each X_n

³Presented at the Ohio University Conference on Topology, May 1976.

is compact first countable.

The following questions are outstanding:

- 1. Is $\square^{\omega}(\omega+1)$ always paracompact or normal?
- 2. Is $\Box^{\omega_1}(\omega+1)$ normal in any model of ZFC?
- 3. Can there be a normal non-paracompact box product of compact spaces?
- 4. Is the box product of countably many compact linearly ordered topological spaces paracompact?

References

- 1. E. K. van Douwen, Functions from ω to ω , this conference.
- P. Erdos and M. E. Rudin, A non-normal box product, Coll. Math. Soc. Janos Bolyai #10, Kesztheley, Hungary, 1973.
- S. Hechler, A dozen small uncountable cardinals, Topo 72--Gen. Top. and Appl., Lect. Notes in Math. #378, Springer-Verlag (1974), 207-218.
- 4. _____, On the existence of certain cofinal subsets of $^{\omega}\omega$, Axiomatic Set Theory, Proc. Symp. Pure Math. (vol. 13, part 2), AMS (1974), 155-173.
- K. Kunen, Some comments on box products, Coll. Math. Soc. Janos Bolyai #10, Kesztheley, Hungary, 1973.
- 6. , Box products of compact spaces, to appear.
- 7. P. Nyikos, Some surprising base properties in topology, Studies in Topology, Academic Press (1975), 427-450.
- M. E. Rudin, Box products and extremal disconnectedness, Proceedings of the University of Oklahoma Topology Conference 1972, 274-283.
- 9. ____, Lectures on set theoretic topology, Conf. board math. sci. reg. conf. series in math #23, AMS (1975).
- R. M. Solovay, A model of set theory in which every set of reals is Lebesgue measurable, Ann. of Math. (2) 92 (1970), 1-56.

SUNY/Buffalo

Amherst, New York 14226