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A STUDY OF MONOTONE MAPS 

Carlos R. Borges 

Our study consists of two parts. In the first part we 

determine very general conditions under which the following con­

cepts are equivalent: (i) f is a closed map, (ii) f is a compact

map, (iii) f is a quotient map and (iv) f is a compact-covering 

map. These results not only improve known results but also set­

tIe a variety of appealing conjectures. 

In the second part we study the preservation of topological 

properties by monotone maps. These results improve some re­

suIts of Hanai. 

1.	 Beha~or of Monotone Functions 

Many a beautiful and important theorem concerning the 

preservation of topological properties by continuous functions 

has been proved. Generally, one must consider continuous func­

tions f which satisfy additional properties. The following 

properties are very frequently used: 

(a)	 f is a cZosed map, 

(b)	 f is a quotient map, 

-1
(c)	 f is compact (i.e. f (C) is compact whenever C is 

compact) , 

(d)	 f is compact-coveping (i.e. for each compact set B 

there exists a compact set A such that f(A) = B). 

These four concepts are surprisingly different. Hdwever, 

under surprisingly mild restrictions, they are also equivalent. 

Indeed we can easily prove the following results: 

Theopem 1.1. Let f:X ~ Y be a continuous monotone (i.e. 

f-l(p) is aonneated fop each p E YJ map fPom the locally pepiph­

epaZly compact Hausdopff space X onto the Hausdopff k-space Y. 
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If f 
-1 

(p) is compact for each p E Y, then the following are 

equivalent: 

(aJ f is compact, 

(bJ f is a closed map, 

(cJ f is a quotient map, 

(dJ f is compact-covering. 

Proof. It is well-known that (b) implies (a) (See, for 

example, the introduction of Whyburn [9 J). Also, by Lemma 

3.4 of [1], (c) implies (b). Lemma 11.2 of [6] proves that (d) 

implies (c). Clearly (a) implies (d), which completes the 

proof. 

Theorem 1.2. Let f:X ~ y be a continuous monotone map from 

the locally peripherally compact Hausdorff space X onto the 

-1
Hausdorff k-space Y. If bdry f (p) is compact for each p E Y, 

then	 the following are equivalent: 

(aJ f is a quotient map, 

(bJ f is a closed map, 

(cJ f is a compact-covering map. 

Proof. By Lemma 3.4 Of [1], (a) implies (b). To see that 

(b) implies (c), let X· = X - U {[f-l(P)]olp E y} and note that 

fix' is closed and has compact point inverses. Therefore fix' 

is compact (see introduction of [9]) which implies that f is 

compact-covering, as required. Lemma 11.2 of [6] proves that 

(c) implies (a). (Indeed this last implication is the only one 

which requires that Y be a k-space!) 

Note that Hausdorff k-spaces are exactly the quotient spaces 

of locally compact Hausdorff spaces (see Theorem 9.4 on p. 248 

of [4]). Therefore, Theorem 1.2 automatically yields substan­

tial improvements of Corollaries 2.61 and 2.62 of [9] and of 

Theorem 9 of [5]. 

The following two simple examples clearly show that none 
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of the hypotheses of Theorems 1.1 and 1.2 are superfluous. 

Example 1.3. There exists a a-compact metric space X, a 

compact metric space Y and a compact-covering quotient map f 

from X onto Y such that 

-1(a) f (p) is compact and connected for each p E Y. 

(b) f is not closed (and hence not compact, by Theorem 1.2). 

Proof. Let E be the euclidean plane with the usual topology 

and let An {(np,p) E Eln-22..p2..n}, for each positive integer 

n (i.e. An is a certain line segment of the line x = ny). We 

now let X and Y be the following subspaces of E: 

00	 00-2 -1 
X= {( 0, o)} U U n=l An'	 Y = {( 0, 0) } U {( n ,n )} n=l · 

Finally we define f:X ~ Y by f(O,O) = (0,0), f(A ) = 
n 

2 l(n- ,n- ), for each n. All our requirements are clearly satis­

fied. 

Example 1.4. There exists a locally compact metric space 

X, a compact metric space Y and a quotient map f from X onto Y 

such that 

(a) f-l(p) is compact for each p E Y, 

(b) f is not closed (and hence not compact, by Theorem 1.2). 

Proof.	 Exactly the same as the proof of Example 1.3, ex­

-2 -1cept that An = {(np,p) E Elp = n or n ~p~n}, for each 

positive integer n. 

2. Monotone Quotient Images 

We will prove the following result, which is an improve­

ment of Theorem 9 in Hanai [6]: 

Theorem 2.1. If f:X ~ Y is a monotone quotient map from 

a metrizable locally separable (locally compact) space X onto 

a regular first countable space Y, then Y is a metrizable 

locally separable (locally compact) space. 
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Surprisingly, this result becomes false if "metrizable" 

is everywhere replaced by "stratifiable" (see Example 2.4). 

Indeed we will first prove the stronger result. 

Theorem 2.2. If f:X ~ Y is a monotone quotient map from 

the paracompact locally Lindelof (locally separable) space X 

onto the regular space Y~ then Y is paracompact and locally 

Lindelof (locally separable). 

Proof. We will prove this result for a paracompact locally 

Lindelof space X (for paracompact locally separable spaces the 

proof is similar and simpler): Let u be a locally finite open 

cover of X such that the closure of each element of u is 

Lindelof and let v be an open cover of X such that 

{st(st(x,v),v) Ix E X} is a refinement of u. 

For V E v, let V = st(V,v) and, for each integer n~l,o 
let V st(Vn_l,v). Then the set V* = U~=l V is clopenn n 

(i.e. open and closed) . (Clearly V* is open. Let x E V:; 

then st(x,v) n V* ~ ~ and thus st(x,v) n V ~ ~ for some n;n 

hence x E V + l C V*. Thus V* is closed.) Furthermore V* is n 

Lindelof: Since V- is Lindelof and {st(x,v) n v-Ix E V-} is 

an open cover of v- there exists a sequence {xn}~=l of points 

of V- such that V- C U ~=lst(xn'V). Thus v~ = st(V,v) 

c: st(U~=lst(xn'V),V) (U~=lst(st(xn'V),v»-. On the other 

hand, there exists a Un E u such that U- ~ st(st(x ,v) ,v) for 
n n 

each n. Hence V- c: U 00 lU- is Lindelof. By induction,o n= n 

v~(n=O, 1, 2, ... ) is Lindelof. Since V* U~=oV~' we get 

that V* is Lindelof. 

Thus, by the construction of V*, we easily see tha t X is 

covered by a pairwise disjoint family {Xa}aEA of clopen Lindelof 

subsets. 
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We show {f(Xa ) }aEA is a disjoint family of clopen Lindelof 

subsets of Y which covers Y: Clearly each f(X ) is Lindelof and a
 

{f(Xa)}aEA covers Y. Since f is monotone, X = f-l(f(X )) for
 a a 

each a E A and thus {f(Xa)}aEA is a disjoint family of subsets 

of Y. Since f is a quotient map and X = f-l(f(X )), each a a 

f(X ) is clopen.a 

Therefore Y is the union of a pairwise disjoint family of 

open regular Lindelof (hence, paracompact) subsets. This com­

pletes the proof. 

Proof of Theorem 2.1. By the method of proof of Theorem 

2.2 we get that X is covered by a pairwise disjoint family 

{Xa}aEA of clopen separable subsets. Thus, by the Corollary 

on page 695 of [8], Y is covered by the family {f(Xa)}aEA of 

open separable metrizable subsets. Hence Y is clearly metrizable 

and locally separable. The "local compactness" follows from 

Lemma 1 in [8]. 

Example 6.1 in Stone [8] shows that Theorem 3.1 is false 

if f is not monotone, and the following example shows that 

Theorem 2.1 is .false if X is not locally separable. Thus none 

of the hypothesis in Theorem 2.1 is superfluous. 

Example 2.3. There exist topological spaces X and Y such 

that X is metrizable and not locally separable~ Y is hereditarily 

paracompact, first countable and not metrizable, and an onto 

-1 
monotone quotient map f:X + Y with f (y) compact for each 

Y E Y (furthermore 3 f is pseudo-open). 

Proof· Let the set of irrational numbers A = U 00 A
n=l n 

such that the An are uncountable, disjoint and dense in the 

euclidean line. (This can easily be done!) Let 
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x = {(x,y) 10~y~1, Y2:.1/n for x E An' y = 0 for x rational}, 

with the following topology: A neighborhood of (x,O) E X is 

the intersection of X with an open disk, in the plane, cen­

tered about (x,O); a neighborhood of (x,z) E X, with x irra­

tional, is an open interval (intersected with X) of the verti­

cal line x = z containing (x,z). 

Let Y be the set of real numbers and define f:X ~ Y by 

f(x,w} = X, for each (x,w) E X. Give Y the quotient topology 

with respect to f. It is easily seen that all our claims are 

satisfied. 

Example 2.4. There exist separable first countable topo­

logical spaces X and Y such that X is an Ml-space~ Y is not 

monotonically normal~ and an onto monotone quotient map f:X ~ Y 

-1
such that each f (y) is compact. 

Proof· (We modify an example of van Douwen [3].) Let 

Z = p U Q, where P = {(x,O) Ix irrational} and Q = {(x,y) Ix,y ra­

tional, y > O}. Let (x,y) = n be a one-to-one correspondencexy 

between Q and {l - linin is a positive integer}. 

Let Y be the set Z with the following topology: A neigh­

borhood of p = (x,O) is of the form 

B(p,E) = {(s,t) E zlt~lx - sl <E} 

for any E > O. A neighborhood of (x,y) E Q is an ordinary 

euclidean neighborhood. In Example 2.4 of [3], it is proved 

that Y is not monotonically normal. 

Let X = ZxI, where I is the closed unit interval. Define 

a topology on X, as follows: A neighborhood of «x,O) ,O} = (p,O) 

is of the form S(p,E} = B(p,E} x [0, lin], for some positive 

integer nand E > O. 

A neighborhood of «x,y) ,n ) with x,y rational, is of the xy 

form U x V such that U is an ordinary euclidean neighborhood of 
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(x,y) and V is an open interval (intersected with I) centered 

at n A neighborhood of any other ((x,y) ,t) is of the form xy 

{(x,y) } x Nt such that Nt is an open interval centered at t 

(intersected with I) . It is easily seen that X is an heredi­

tarily Ml-space, because of Example 2.3 of [3]. Clearly, both 

X and Yare separable first countable spaces. 

Let f:X + Y be defined by f((x,w) ,t) = (x,w). It is easily 

seen that f is a monotone quotient map. 
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