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ON THE INVARIANCE OF CYCLIC ELEMENTS 

UNDER POINTWISE ALMOST PERIODIC 

TRANSFORMATION GROUPS 

Jean-Marie P. Pages 

1. A continuum is a compact connected Hausdorff space. 

A closed subset A of a continuum X is a nodal set if Fr (A) 

contains at most one point. A subcontinuum C of X is a uni­

versal subcontinuum (USC) of X if C n A is a continuum for each 

subcontinuum A of X. A nodal set is a USC. The intersection 

of arbitrarily many USC's is a USC. X is semi-locally con­

nected (s.l.c.) if each point of X has arbitrarily small neigh­

borhoods whose complements have a finite number of components. 

A locally connected continuum is s.l.c. A point x E X separates 

y from z if X - x = ulv with y E U and Z E V. We write 

E(x,y) {x,y} U {z: z separates x from y}. A point e is an 

endpoint of X if e has arbitrarily small neighborhoods whose 

closures are nodal sets. 

1.1. LEMMA: Let X be a continuum. 

(aJ Let a be a collection of usc of x. a has the finite 

intersection property if any two elements of a meet. Then if 

C is a subcontinuum of X3 a U {C} has the finite intersection 

property iff C meets each member of a. 

(bJ If A and B are usc of X which meet 3 then A U B is a 

usc. 

The proof of (a) is obtained by modifying the argument 

of [3], Lemma 1. (b) is proved in [6], where a USC is called 

a semi-chain. 

1.2. THEOREM: Let X be a s.l.c. con~inuum3 and X 3 Y3 and 

z E X. 
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(a) If x ~ E(y,z)J y and Z lie in a continuum C eX-x. 

(b) Each component of x-x is open. 

(c) If x is a non-cutpoint J x has arbitrarily small neigh­

borhoods whose complements are connected. 

(d) Each USC of X is s.l.c. 

(e) If C is a USC of X and X J YJ z E C are such that z 

separates x from y in CJ then Z separates x from y in X. 

The proof is left to the reader. 

By 1.2(a), the set E(x,y), is closed; order E(x,y) as 

follows: x is the least and y is the largest element. If 

z, w E E(x,y), then z <w if z E E(x,w). < is a total order, 

called the separation order on E(x,y). The order topology on 

E(x,y) is the same as the subspace topology. 

2. Cyclic element theory for metric spaces is found in 

[8]. We will consider non-metrizable continua, so we will 

develop certain results in cyclic element theory which will be 

needed later. Certainly not all the results of this section are 

new, but the proofs seem to be new. 

In this section X is a s.l.c. continuum. A true cyclic 

element of X is a subcontinuum C of X which is maximal with 

respect to containing no cutpoint of itself. Any connected sub­

set of X which contains no cutpoint of itself is contained in 

a true cyclic element. Two points x, y E X are conjugate, 

x - y, if E(x,y) = x U y. We write: C(x) = {y E X: x _ y} 

Any two points of a true cyclic element are conjugate. 

2.1. THEOREM: Let X be a s.l.c. continuum and x E X. 

(a) C(x) is the intersection of all nodal sets A such that 

x E Int A. 

(b) If x is a non-cutpoint for which C(x) is degenerate J 

then x is an endpoint. 
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rcJ If C(x) is non-degenerate~ C(x) is the union of all 

true cyclic elements of X which contain x; C(x) can have no 

cutpoint except~ possibly~ x; if R is a component of C(x)-x~ 

then R is a true cyclic element. 

rdJ If two distinct cyclic elements meet~ they meet in a 

cutpoint of x. 

The proof is left to the reader. 

A cyclic element of a s.l.c. continuum X is an endpoint, 

cutpoint, or a true cyclic element. If C is a true cyclic 

element of X, and x, yare distinct points of C, then 

C = C(X) n C(y), so a point z , C can be conjugate to at most 

one point of C. If X is metrizable, each true cyclic element 

contains a non-cutpoint of X [8]. The following example shows 

that this is not so in general. 

2.2. EXAMPLE: Let S' denote the unit circle. For each 

x E S' , let 1 = [0,1] and Y = II{lx: x E S'}. Let P Y -+ 1 x x- x 

be the x-th projection. Let: X = { (x,f) S' x Y: f(y) for° 
y E S' - x}. X is closed in the product S' x Y, hence is com­

pact. Certainly X is connected. Each point (x,f) E X for 

which f(x) < 1 is a cutpoint. Finally X is locally connected. 

The only true cyclic element of X is S' x O. This space 

has only endpoints and cutpoints, but is not a tree. Wallace 

[6] points out that such spaces exist, but does not give an 

example. 

2.3. THEOREM: If C is a true cyclic element of a s.l.c. continuum 

X and x rt. C~ some point of C separates a point of C from x. 

Proof: Suppose the theorem is false. Choose y E C for 

which y ¢ C(x). Then E(y,x) contains a point w for which 

y < w < x, where < is the separation order on E(y,x). Choose 

z E C-y. Then y cannot separate z from x, so z U x is contained 
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in a subcontinuum D CX-y. Then E(x,y)-y c D~ hence y ¢ E(x,y)-y. 

Since E(x,y) is a compact ordered space, there is a first ele­

ment w E E(y,x) following y. 

Let R be the component of X-C containing x. Since R U C 

is a continuum we have E(y,x) c R U C, and this means w E R. 

Now if y - w, we cannot have z - w, for otherwise w E C. 

But since z - y and w - y, we must have y E E(z,w), i.e. 

X-y - ulv, where U is the component of X-y containing z, and 

w E V. Then R cV and y E E(a,x) which is impossible. If 

y t w, then E(y,w) - (y U w) 1 ~, and this contradicts the 

choice of w. The proof is complete. 

2.4. THBOREM: Let C be a true cyclic element of a s.l.c. 

continuum X. Then the components of x-c are open sets with one 

point boundaries. 

Proof: Let R be a component of X-C and choose x E R. By 

2.3, we can find y E C and a separation X-y = ulv where U is 

a component of X-y with C n u 1 ~ and x E V. Then C c U Uy 

and ReV. Thus R is a component of V, hence of X-y. 

Let X be a s.l.c. continuum and A eX. The convex hull 

of A, H(A) , is the union of A and all points which separate a 

pair of points of A. H(A} contains A and contains E(x,y} 

whenever x,y E H(A), and is the smallest subset of X with 

these properties. 

2.5. LEMMA: Let X be a s.l.c. continuum and A be a closed 

subset of x. If x is not in the convex hull of A, A lies in a 

subcontinuum of X not containing x. 

Proof: Choose a neighborhood U of x which does not meet 

A, and whose complement has finitely many components. Let 

CI ' ••• , Cn be those components of X-v which meet A. Since x 

separates no pair of points of A, by 1.2(a), we can link Ci 

and C + with a continuum K lying in X-x, i=l, ••• , n-l. Thei l i 



TOPOLOGY PROCEEDINGS Volume 1 1976 231 

desired continuum is C U K U C U ... UK - U Cn.
l l 2 n l 

2.6. COROLLARY: The convex hull of a closed subset of a 

semi-locally connected continuum is closed. 

2.7. THEOREM: Let F be a closed non-degenerate subset of 

a s.l.c. continuum X. Suppose x ~ H(F) and x is conjugate to at 

most one point of H(F). Then there is a nodal set A with F c A 

and x ~ A. 

Proof: Suppose x lies in a true cyclic element C of X. 

Then C contains at most one point of F, so F meets a component 

R of X-C. Let y R n C. Let S be the union of all components 

of X-y which lie in X-C and meet F. If F meets a component R
l 

of X-C with ~l n C = z ~ y, then x - y, x - z and y U z c H(F), 

and this is impossible. Suppose y ~ x. Then C contains no 

member of F other than y, for otherwise y would be in H(F). 

Thus S U y is the required nodal set. If y = x, then S is a 

component of X-x (because x ~ H(F» and F c S. If x lies in a 

true cyclic element C
l 

of S, we repeat the above argument with 

S replacing X and find a point Yl and the union Sl of the com­

ponents of S-Yl which meet F and lie in S-c This time
l

. 

x ~ Yl since S is connected, and Sl U Yl is the required nodal 

set. If x lies in no true cyclic element of S, replace X by 

S in the following argument. 

Suppose C(X) = x. By 2.5, F lies in a continuum C eX-x. 

Using l.l(a) and 2.l(a), we find that C fails to meet a nodal 

set A with x E Int A. Then X-A is the required nodal set. 

If M is a closed subset of X let A(M) be the intersection 

of all nodal sets containing M. M is an A-set if A(M) = M. 

2.8. THEOREM: If M is a closed subset of a s.l.c. continuum 

X, then A(M) is the union of H(M) and all true cyclic elements 

of X which meet H(M) in at least two points. 
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Proof: If B is a nodal set containing M then B contains 

H(M) and any true cyclic element of X meeting H(M) in at least 

two points. 

If x ~ H(M) and x is not in any true cyclic element meeting 

H(M) in two points, then x can be conjugate to at most one point 

of H(M): if x - y and x - z with y, z E H(M) and y ~ z, then 

x U y and x U z lie in true cyclic elements E and F of X. Now 

E F is impossible and E ~ F implies x = E n F so x E H(M), 

which also is impossible. Hence there is a nodal set B with 

M c B and x ~ B. This means x ~ A(M) and the proof is complete. 

2.9. THEOREM: If M is a closed nonempty subset of a s.l.c. 

co~tinuum X~ then A(M) is the union ~f cyclic elements of x. 

Proof: We show that if x E A(M), then there is a cyclic 

element C of x with x E C c A(M). If x is an endpoint or a 

cutpoint, this is obvious. Otherwise, x is a non-cutpoint other 

than an endpoint. If B is a nodal set with M c B, then x E Int B, 

so by 2.I(a), C(x) c B. Thus C(x) c A(M), and by 2.I(c), C(x) 

is a true cyclic element. 

3. Our terminology for transformation groups comes from 

[2], except our groups act on the left. 

Let (X,T) be a transformation group, where X is a continuum. 

X is T-irreducible if no proper subcontinuum of X is invariant. 

If X is T-irreducible, then no proper USC of X can contain a 

nonempty invariant set I. For otherwise, the intersection of 

all USC of X containing I would be invariant. 

3.1. THEOREM: Let (X,T) be a transformation group~ where 

X is a s.l.c. continuum which is T-irreducible and contains a 

cutpoint. 

(aJ X contains at least two endpoints.
 

(bJ If e is an endpoint of X~ then e E Tx for each x E x.
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(cJ (X,T) is almost periodic at each endpoint of x., and 

X contains exactly one minimal orbit closure. 

(dJ If (X,T) is pointwise almost periodic., then X is a 

minimal orbit closure. 

Proof: To prove (a), we will show that if z is any non­

cutpoint of X, then X contains an endpoint different from z. 

We first observe that if X-x ulv, then neither U Ux 

nor V U x can contain the orbit TX, so both contain a cutpoint 

of X (see the remarks preceding 3.1). 

Let E be the set of cutpoints of X. For each x E E write 

X-x = R(x) Is(x) where R(x) is the component of X-x containing 

z. Now y E S(x) n E implies S(y) c S(x): For R(x) is connected, 

meets R(y), and y ~ R(x), so R(x) c R(y). A similar argument 

then shows that S(y) c S(x). 

Order the collection {S (x): x E E} by j.nclusion and extract 

a subcollection {S(y): y E Y} which is maximal with respect to 

being totally ordered by inclusion. Let S = n {S (y)": y E Y}. 

We prove that S contains no cutpoint of X. For if xES is a 

cutpoint of X, then x E S(y) for each y E Y-x so S1XT c S(y) 

for such y. Now S(x) contains a cutpoint p of X and S(p) c S(X). 

Then {S(y): y E y} is not maximal, which is a contra.diction. 

Since S is a USC and contains no cutpoints of X, l.2(e) 

implies that S has no cutpoints of itself, and by contruction, 

S is maximal with respect to this property. By 2.3, each true 

cyclic element contains a cutpoint of X, so S is an endpoint. 

This proves (a). 

(b) Suppose e is an endpoint and e ~ Tx for some x E X. 

Then there is a nodal set A with e E Int A and A c X-Tx, whence 

Tx c X-A. Thus X is not T-irreducible. 

(c) By [2, 4.06] X contains an almost periodic point, and 

(X,T) is almost periodic at each point of Tx [2, 4.09]. ThlAS 

the first reading of (c) follows from (b). 
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Distinct minimal orbit closures are disjoint; thus the 

second reading of (c) follows from (b), and [2,2.12]. 

(d) If (X,T) is pointwise almost periodic, the orbit 

closure of each point is minimal. Now use (c). 

We now extend some results of Ayres, [1], on pointwise al­

most periodic homeomorphisms to transformation groups. The 

proof of the following theorem is to be found in [4] and [7]. 

3.2. THEOREM: Let (X,T) be a transformation group, where 

X is a continuum. Suppose one of the following holds: 

(aJ T is abelian. 

(bJ (X,T) is pointwise regularly almost periodic and X 

is s. l.c. Then T leaves invariant a subcontinuum of X which 

contains no cutpoints of itself. 

In [4], locally connectedness was assumed for (b), but 

semilocal connectedness is actually sufficient. 

3.3. LEMMA: Let (X,T) be a pointwise almost periodic 

transformation group where X is a s.l.c. continuum for which 

X = A U B where A and B are nodal sets with A n B = {x}. If 

tA meets A and tB meets B for each t E T, then x is fixed under 

T. 

Proof: By l.l(a), the collections {tA: t E T} and 

{tB: t E T} have the finite intersection property. Let 

C = n {tA: t E T} and D = n {tB: t E T}. Then C and Dare 

nonempty T-invariant subcontinua of X. 

Assume x is not fixed. Choose t E T for which tx ~ x. 

Suppose tx E B. Since A meets tA and does not contain tx, 

ActA. Then tB meets B and does not contain x, so tB C B. 

Thus x ~ D. Since tx ~ A, we have tx ¢ C, hence x ~ C. Thus 

x separates each point of C from each point of D. Let 

H= n{E(y,Z):yEC,ZED}. 
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Then H is T-invariant, and any E(y,z) induces a total order on 

H under which T acts as a group of order isomorphisms. Since 

x E H, we have Tx c H, and since Tx is a compact ordered space, 

it contains a largest element which must be fixed under T. But 

Tx is minimal, [2, 4.07], hence contains no fixed point. This 

contradiction proves the theorem. 

3.4. THEOREM: Let (X,T) be an almost periodic transforma­

tion group where X is a non-trivial s. l.c. continuum. If T 

leaves an endpoint e of X fixed, then T leaves infinitely many 

cutpoints of X fixed. 

Proof: Choose a neighborhood V of any x ~ e with e E V. 

Let A be a syndetic subset of T for which Ax c V, and K be a 

compact subset of T for which KA = T. Then Ax c V, and since e 

is fixed under T, e ~ KAx = Tx. Choose a nodal set B with 

e E Int Band B c X-Tx. If Y = Fr(B), by 3.3, y is fixed. 

Since e is an endpoint, E(e,y) is infinite and 3.3 implies 

that each point of E(e,y) is fixed under T. 

3.5. THEOREM: Let (X,T) be an almost periodic transforma­

tion group where X is a s.l.c. continuum. Let I(T) be the union 

of all invariant cyclic elements of x. If either T is abelian 

or (X,T) is pointwise regularly almost periodic~ then I(T) is 

a nonempty A-set. 

Proof: That I(T) ~ ¢ follows from 3.2. If I(T) is a point, 

it is an endpoint or cutpoint, and we are through. Thus assume 

I(T) is non-degenerate. We first show that if x E X separates 

a pair of points of I(T), then x is fixed under T. Suppose 

X-x = vlv where V and V meet I(T). Then V and V are open, hence 

both meet I(T) and V U x and V U x both contain an invariant 

cyclic element, so 3.3 implies that x is fixed. 

Next we will show that if x E I(T), then x lies in an in­

variant cyclic element. 'This will prove that I (T) =: I (T) . 
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Suppose x ~ y with y E I(T). Let C be a true cyclic ele­

ment containing x U y. We assume that x lies in no invariant 

cyclic element of X. If I(T) c C, then the non-triviality of 

I(T) implies that C is invariant, which is contrary to assump­

tion. Thus I(T) meets a component R of x-c. Let R n C = z. 

Then z separates two points of I(T), and as we have seen, z 

must be fixed. Let S be the union of all components of X - c 

whose closures meet C in the point z and write X - z = slu. 

Then x E U so I (T) must meet U. Hence U contains an invariant 

cyclic element A. Now AcC would imply that tC n C contains 

two points, all t E T, and so tC = C, all t E T, and C would 

be invariant. Thus A meets a component Q of X - C, and Q con­

tains an invariant cyclic element. If W = Q n c, then W must 

be fixed. Then C contains two fixed points, hence is invariant. 

This contradiction shows that x must lie in some invariant 

cyclic element of X. 

Now suppose x + y for all y E I(T). Choose any y E I(T). 

Then E(x,y) contains a point w ~ x U y. Arguing as above, any 

such point is seen to be fixed. If E(x,y) contains a first 

element w following x in its separation order then x ~ wand 

this is not possible since w E I(T). Since the order topology 

and subspace topology on E(x,y) coincide, x is a limit point of 

fixed points, hence is fixed. If x is an endpoint or cutpoint 

we are through. Otherwise C(x) is a true cyclic element, hence 

is invariant. Thus I(T) is closed. 

We have already seen that each cyclic element in H(I(T)) 

is closed. Now let C be a true cyclic element of X which meets 

H(I(T)) in at least two points, say x and y. Then x and y lie 

in invariant cyclic elements A ~nd B, respectively. If A = B, 

then A = B = C and C is invariant. Otherwise A n B = ~: 

for A, B, and C are USC of X, and A n B ~ would imply 

A n B n c = ~ by 1.1 (a), so A n c B n c A n B n C is a point. 
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If A is non-degenerate, then A n C separates A - A n C from B, 

so is fixed. In any case, A n C is a fixed point. Likewise, 

B n C is a fixed point. Then C contains two fixed points, so 

is invariant. 

We have shown that each cyclic element of X lying in 

A(I(T» is invariant. By 2.9, this means that A(I(T» = I(T), 

and the proof is complete. 

Note: In the above proof, the fact that I(T) is closed can 

be deduced by use of Whyburn's H-sets. This direct proof seems 

simpler, however. 

3.6. THEOREM: Let (X,T) be a pointwise almost periodic 

transformation group, where X is s.l.c. and T is either abelian 

or (X,T) is pointwise regularly almost periodic. If C is a 

non-invariant cyclic element, A(TC) contains exactly one in­

variant cyclic element of x. 

Proof: A(TC) is an invariant non-trivial subcontinuum of 

X, hence by 3.2 some cyclic element D of A(TC) is invariant. 

If D is an endpoint of A(TC), 3.4 implies some cutpoint x of 

A(TC) .is invariant and x is a cutpoint of X. If D is a cutpoint 

of A(TC), then D is also a cutpoint of X. If D is a true cyclic 

element of A(TC), then D is also a true cyclic element of X 

(use 2.9). Thus A(TC) contains an invariant cyclic element of 

X. If A(TC) contains two invariant cyclic elements, then 3.3 

implies that some cutpoint x separating two points of TC is 

fixed. Let {R } be the collection of all components of X-x a 

which meet TC. Since each R is open, each R meets TC, hence 
a a 

each contains tC for some t E T (t depends on a). If R t R ' a S 
-1let tc = R and sC = R Then st R = R Since a S. a S. 

A(TC) c U {R } U x, A(TC) contains no invariant cyclic
a 

element other than x. 
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As a final note we observe that there are dendrites which 

are	 minimal orbit closures under their total homeomorphism groups. 

One	 such example was constructed by Doyle and Hocking (Arner. 

Math. Monthly, 1961). Thus pointwise almost periodicity of a 

transformation group (X,T) with s.l.c. phase space is not suf­

ficient to insure the existence of an invariant cyclic element. 
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