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STRONG QUASI-COMPLETE SPACES 

Raymond F. Gittings· 

1. Introduction 

Many concepts in metrization theory have either been defined 

or can be characterized by means of a sequence of open covers 

which guarantee that certain sequences have cluster points. 

These concepts actually occur in upairs u wIth the stronger con

cept requiring a certain type of sequence to cluster at a par

ticular point, whereas the weaker concept merely requires a 

sequence of the same sort to cluster. The purpose of this 

paper will be to introduce a class of spaces motivated by this 

"pair u occurrence, and to investigate the relationship to vari

ous other important classes of spaces. 

Unless otherwise stated, no separation axioms are assumed; 

however, all regular spaces are assumed to be T The positivel . 

integers are denoted by N. If GU is a cover of X then GU * = 

{St(uflL): U EGlL}. 

Let <GUn> be a sequence of open covers of a space X. 

Consider the following conditions on the sequence <Gl.J~ >. 
n 

(A) (i) GU1 >GU; >GU >GU; >
2 

(ii) If x E St (x,GlL ), then the sequence < x > has a n n n 

cluster point. 

(B) If x E St2 (x,GlL ), then the sequence < x > has a 
n n n 

cluster point. 

(C) If x E St (x,GlL ), then the sequence < x > has a cluster n n n 

point. 

(D) If {xi: i ~ n} U {x} C Un E GUn' then the sequence < x > n 

has a cluster point. 

*Supported by the Research Foundation of the City University of 
New York, Grant No. 11115. 
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A space X with a sequence <GUn> satisfying (A), (B), (C) 

or (0) is called an M-space [20], wM-space [18], w~-space [4] 

or a quasi-complete space [10], respectively. If, in (A), (B) 

and (C), we require that the sequence <X > clusters to x, then n 

(A) and (B) are well-known characterizations of metrizability 

(at least for TO-spaces) and (C) is clearly equivalent to the 

definition of a developable space. In fact, (A) is the condi

tion of the Alexandroff-Urysohn Metrization Theorem [1], and 

(B) is that of the Moore Metrization Theorem [19] (see also
 

[18, Theorem 2.3 in II]).
 

The conditions given in (A), (B) and (C) illustrate our 

previous discussion concerning certain concepts occurring in 

"pairs," and motivate the following definition: A space X is 

called a strong quasi-complete space if there exists a sequence 

<G\L > of open covers of X such tha t if {xi: i > n} U {x} C Un E GUn' n 
then the sequence < x > clusters to x. The sequence <~> will be n 

called a strong quasi-complete sequence. I f the sequence <GU > 
n 

satisfies condition (0) it will be called a quasi-complete 

sequence. 

The basic implications among the concepts defined in (A), 

(B), (C) and (0) are given in the following diagram: 

M-space metrizable 

J 
wM-space 

J 
w~-space developable 

1 
quasi-complete ~ strong quasi-complete 

None of the implications are reversible; moreover, the 

space [O,~), where ~ is the first uncountable ordinal, is an 

M-space which is not strong quasi-complete. An example of a 

strong quasi-complete space which is not a developable space 

will be presented in Section 2 (see Bxample 2.4). 
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A natural question to ask at this point is the following: 

Under what conditions does a concept in the first column imply 

the corresponding concept in the second column? Several solu

tions are known and these will be discussed in Section 2; how

ever, several questions remain open. 

2. Strong Quasi-Complete Spaces 

In this section we discuss the relationship of strong 

quasi-complete spaces to other classes of spaces, and determine 

when a quasi-complete space is strong quasi-complete. 

In [8], Chaber proved the following important result. 

Theorem 2.1 (Chaber [8]) A T2-space is metrizable if and 

only if it is an M-space with a Go-diagonal. 

In light of Chaber's result, the following problems become 

particularly interesting. 

(1) Is every regular wM-space with a Go-diagonal metrizable? 

(2) Is every regular w~-space with a Go-diagonal developable? 

(3) Is every regular quasi-complete space with a Go-diagonal 

strong quasi complete? 

In Theorem 2.2 we show that question (3) has a positive 

answer. This is particularly interesting since questions (1) 

and (2) remain open even if we assume collectionwise normality. 

Several partial solutions of questions (1) and (2) are known. 

For example, it follows from results in [17] that positive solu

tions are obtained if we assume e-refinability or if we replace 

Go-diagonal by G;-diagonal or o#-space (= a-space [17, Lemma 4.8]). 

A space X is called a p-space if there exists a sequence 

<§n> of open covers of X satisfying: If x E X and G E §n such 
n 

that x E G , then 
n 

(a) n 00 G is compact;
n=l n 

(b) if x E nni=l-Gi , t h en t h e sequence < x > c 1usters. n n 
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The class of p-spaces was introduced by Arhangel'skiI [2]; 

however, the above definition is the characterization obtained 

by Burke [5] (complete regularity is not assumed in our defini

tion). Recall that for regular spaces, condition (b) is a 

characterization of quasi-complete spaces [15]. 

According to Ceder [7], a space X has a Go-diagonal if and 

only if there is a sequence <§n> of open covers of X such that 

n ~=l St (x,G ) = {x} for every x E X. The sequence <§n> will be n 

called a Go-diagonal sequence. 

Theorem 2.2. For a regular space X, the following are 

(a) X is a strong quasi-complete space. 

(b) X is a p-space with a Go-diagonal. 

(c) X is a quasi-complete space with a Go-diagonal. 

Proof· (a) ~ (b): Since every regular quasi-complete 

space with a Go-diagonal is a p-space [15, Theorem 3.6], it 

suffices to show that a strong quasi-complete space has a G 
o 

diagonal. Let <~ > be a strong quasi-complete sequence for X. 
n 

Suppose x, y E X with x ~ y. If Y E n~=lSt(xmn)' then there 

exists a Un E qrn such that {x,y} C Un for every n E N. It fol

lows that the constant sequence <y> must cluster to x. Since 

this is impossible, ~n> is a Go-diagonal sequence for X. 

The fact that (b) ~ (c) is a consequence of [15, Lemma 

3.3] . 

(c) ~ (a): Let <~n> be a quasi-complete sequence for X, 

and let <§n> be a Go-diagonal sequence for X. For each n E N, 

let ~ =~ 1\ ~ = {u n G: U E ~ , G E §n}. By regularity, there n n n n 

is an open coverW1 of X such that {W: W E WI} <l~l and, for each 

n2:. 2 , an open coverlt)n of X such that {W: W Elf) } <1'1 I\lf) 1. n n n-

We note that <~n> is both a quasi-complete sequence and a G 
o 

diagonal sequence for X. If {Xi: i>n} U {x} CWnEW , then 
n 
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the sequence < x > has a cluster point y. Since x E W for 
n k n 

every k 2:.n, y rt. X - W for any n E N. Hence y E n~=:lWn c n 

{x} • Thus y = x and <It) > is a strongr quasin 

complete sequence. 

A base of countabZe order [22] for a space X is a base ffi 

such that if e is a perfectly decreasing subcollection of ffi 

(i.e. e contains a proper subset of each of its members) and 

x E n{C: C E e}, then e is a local base at x. 

Theorem 2.3. Every regular streng quasi-complete space X 

has a base of countabZe order. 

Proof. Let <GUn> be a strong quasi-complete sequence for 

X. For each n E N, let'l:J = {V open in X: V cUE GU } and note 
n n 

that'l:J is a base for X. Suppose x E V E 'l:J and V + c V . 
n n n n l n 

Since the proof of (a) -+ (b) in Theorem 2.2 shows that <GUn> is 

a GcS-diagonal sequence, it follows easily that n ~=liJn = {x}. 

Let W be any open set such that x E W. If x E Vn-W, then 
n 

{xi: i2:. n } U {x} C V because Vi C V if i >n. Hence the 
n n 

sequence < x > clusters to x which is a contradiction. Thus 
n 

<V > is a local base at x, and so X has a base of countable 
n 

order [22, Theorem 2]. 

It follows from results in [22], that every regular, e

refinable, strong quasi-complete space is developable, and 

that every paracompact, strong quasi-complete T -space is
2

metrizable. 

In order to dispel any thought on the part of the reader 

that the concept of strong quasi-complete might be equivalent 

to either developable or base of countable order, we site the 

following examples. 

Example 2.4. A collectionwise normal, strong quasi-complete 

space which is not a developable space. 
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The space A constructed by van Douwen in [11] is such a 

space. Since A is locally compact and submetrizable, A is a 

strong quasi-complete space. It follows easily from the fact 

that A is normal and wI-compact, that A is collectionwise normal. 

Since A is not metrizable, A is not developable [3, Theorem 10]. 

The space [O,n) shows that a space with a base of countable 

order need not be strong quasi-complete. 

Several examples exist which show that strong quasi-complete 

spaces do not possess some of the well-known properties possessed 

by developable spaces. Recall that every developable Tl-space 

is 8-refinable [22]; however, the space ~ constructed by van 

Douwen in [11] is a strong quasi-complete space which is not 

even countably 8-refinable. Actually, van Douwen shows that ~ 

is not countably metacompact; however, a countably 8-refinable 

space is countably metacompact [14]. The space r of van Douwen 

and Wicke [12] is a strong quasi-complete space which is not 

even countably orthocompact (note that ~ is orthocompact). 

As was shown earlier, every strong quasi-complete space 

has a Go-diagonal; however, Burke's Example [6] shows that a 

completely regular quasi-complete space need not have a G8
diagonal. On the other hand, a regular developable space is 

easily seen to have a G6-diagonal. 

In the discussion following questions (1), (2) and (3) we 

noted that replacing Go-diagonal by cr#-space gives a positive 

answer to questions (1) and (2). However, we do not know the 

answer to the "following: 

(4) Is every regular quasi-complete, cr#-space a strong 

quasi-complete space? 

3. Properties of Strong Quasi-Complete Spaces 

In this section we discuss some of the topological proper

ties of strong quasi-complete spaces. Before doing this, however, 
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let us give some alternate characterizations of strong quasi-

complete spaces. The proofs will be left to the rea.der. 

Theorem 3.1. For a space X~ the following are equivalent: 

(i) X is a strong quasi-complete space. 

(ii) There exists a sequence <GUn> of open covers of X such 

that if x E U E GlL ~ then {U : n E N} is a local subbase at x. n n n 

(iii) There exists a sequence <"lLn> of open covers of X such 

that if {xi: i 2:. n } c U{U: U E GlL~} and x E n{U: U E ('lL~} for some 

finite subset"lL' cGU ~ then < x > clusters to x. n n n 

The equivalence of (i) and (ii) is easy and is noted in 

[13]. That (i) and (iii) are equivalent follows exactly as in 

[15, Lemma 3.4]. It is interesting to note that if we allow 

the f ini te collection GU' in (iii) to be countable, ~~e actually
n 

obtain a characterization of developable spaces. 

Strong quasi-complete spaces exhibit much better behavior 

than quasi-complete spaces with respect to subspaces and pro

ducts. It is known that quasi-complete spaces are not heredi

tary [15] and not countably productive [16]. 

Theorem 3.2. (a) Every strong quasi-complete space is 

hereditarily strong quasi-complete. 

(b) If < X > is a sequence of strong quasi-complete .spaces~ then 
n 

X = TI~=lXn is a strong quasi-complete space. 

Proof. The result in (a) follows easily from the charac

terization of strong quasi-complete spaces given in Theorem 

3.1 (ii). That (b) holds follows from [16, Theorem 3.1]. 

In [6], Burke shows that the perfect image of a locally 

compact T2-space with a Go-diagonal (hence a strong quasi

complete space) need not have a Go-diagonal. It follows that 

strong quasi-complete spaces need not be preserved by perfect 

maps. The space Y of Chaber [9] shows that the open compact2 
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image of completely regular, metacompact, complete Moore space 

(hence a strong quasi-complete space) need not be quasi-complete 

nor	 have a Go-diagonal. In [21, Example 3.7], Tanaka constructs 

a regular, paracompact space with a Go-diagonal which is not 

metrizable, but which is the open finite-to-one preimage of a 

compact metric space. It follows that Tanaka's space is not 

strong quasi-complete. The space [O,Q), where Q is the first 

uncountable ordinal, is an M-space and thus the quasi-perfect 

preimage of a metrizable space [20, Theorem 6.1]. However, 

[O,Q) does not have a Go-diagonal and is thus not strong quasi

complete. 

Summarizing these results, we have: 

(1)	 Strong quasi-complete spaces need not be preserved by 

perfect maps or open compact maps. 

(2)	 The preimage of a strong quasi-complete space under an 

open finite-to-one map or a quasi-perfect map need not be a 

strong quasi-complete space. 
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