TOPOLOGY PROCEEDINGS

Volume 1, 1976

Pages 253-260

http://topology.auburn.edu/tp/

A NOTE ON PREPARACOMPACTNESS

by

J. C. SMITH

Topology Proceedings

Web: http://topology.auburn.edu/tp/

Mail: Topology Proceedings

Department of Mathematics & Statistics Auburn University, Alabama 36849, USA

E-mail: topolog@auburn.edu

ISSN: 0146-4124

COPYRIGHT © by Topology Proceedings. All rights reserved.

A NOTE ON PREPARACOMPACTNESS

J. C. Smith

1. Introduction

In 1973 R. C. Briggs [5] introduced two properties, preparacompactness (ppc) and %-preparacompactness (%-ppc) and compared them with the properties of paracompactness and collectionwise normality in various q-spaces. The purpose of this paper is to show that most of the results obtained in [5] can be generalized, hence closing the somewhat large gap between these properties.

Definition 1.1 A T2 space X is preparacompact (resp. 8preparacompact) if each open cover of X has an open refinement $\mathfrak{H}=\{\mathtt{H}_{\alpha}\colon\ \alpha\in\mathtt{A}\}$ such that, if $\mathtt{B}\subseteq\mathtt{A}$ is infinite (resp. uncountable) and if p_{β} and $q_{\beta} \in H_{\beta}$ for each $\beta \in B$ with $p_{\alpha} \neq p_{\beta}$ and $q_{\alpha} \neq q_{\beta}$ for $\alpha \neq \beta$, then the set Q = $\{q_{\beta} : \beta \in B\}$ has a limit point whenever P = $\{p_{\beta}: \beta \in B\}$ has a limit point. The notions of σ -ppc and σ - \aleph -ppc should be clear. Collections satisfying the above property will be called $ppc(\aleph - ppc)$ collections.

Since neither of the above properties implies paracompactness, even in the presence of collectionwise normality, the special setting of q-spaces is chosen for their study.

Definition 1.2 A space X is called a q-space if each point $p \in X$ has a sequence of neighborhoods $\{N_i\}_{i=1}^{\infty}$ such that if $y_i \in N_i$ for each i with $y_i \neq y_j$ for $i \neq j$, then the set $\{y_i\}_{i=1}^{\infty}$ has a limit point.

In [5] Briggs obtained the following.

Theorem 1.3 Let X be a regular q-space. Then the following are equivalent:

254 Smith

- (1) X is paracompact.
- (2) X is \aleph -ppc and subparacompact.
- (3) X is X-ppc and metacompact.

Since the notion of a θ -refinability of J. Worrell and H. Wicke [10] is a generalization of both subparacompactness and metacompactness, it is natural to ask whether the above result can be generalized accordingly. In §2 of this paper we actually obtain a much stronger result using the notion of irreducible spaces [6]. Theorems involving the properties of $\delta\theta$ -refinability [1] and weak $\overline{\delta\theta}$ -refinability [9] are obtained in §3, and in §4 it is shown that every σ - \aleph -ppc, normal q-space is collectionwise normal. Examples and open questions are also included in §4.

2. Irreducible q-spaces

Definition 2.1 An open cover § of a topological space X is called minimal provided no proper subcollection of § covers X. A space X is called irreducible if every open cover of X has a minimal open refinement.

The following lemmas are easy to verify and hence the proofs are omitted.

Lemma 2.2 Let $\mathfrak{G} = \{G_{\alpha} \colon \alpha \in A\}$ be an open cover of an irreducible space X. Then \mathfrak{G} has a minimal refinement $\mathfrak{H}_{\mathfrak{G}} = \{H_{\mathfrak{G}} \colon \beta \in B\} \text{ where } H_{\mathfrak{G}} \subseteq G_{\mathfrak{G}} \text{ for all } \beta \in B \subseteq A.$

Lemma 2.3 A cover $\ \widetilde{\mathbb{W}} = \{ \mathbf{W}_{\alpha} \colon \alpha \in \mathbf{A} \} \ \text{is a minimal cover of}$ \mathbf{X} iff there exists a discrete collection of non-empty closed sets $\{ \mathbf{F}_{\alpha} \colon \alpha \in \mathbf{A} \}$ such that $\mathbf{F}_{\alpha} \subseteq \mathbf{W}_{\alpha}$ for each $\alpha \in \mathbf{A}$.

Theorem 2.4 Let X be a q-space and let $\mathfrak{S}=\{G_{\alpha}\colon \alpha\in A\}$ be a \aleph -ppc collection of open subsets of X. If there exists a discrete collection $\{D_{\beta}\colon \beta\in B\}$ of non-empty subsets of X such

that $D_{\beta} \subseteq G_{\beta}$ for each $\beta \in B \subseteq A$, then $\{G_{\beta} \colon \beta \in B\}$ is either countable or locally finite.

Proof: Suppose B is uncountable and $\{G_{\beta}\colon \beta\in B\}$ is not locally finite at $p\in X$. Since X is a q-space, there exists a countable subcollection $\{G_{\beta_i}^{}\}_{i=1}^{\infty}$ of g and a sequence of points $\{p_{i}^{}\}_{i=1}^{\infty}$ such that

- (i) $p_i \in G_{\beta_i}$ for each i,
- (ii) $p_i \neq p_j$ and $G_{\beta_i} \neq G_{\beta_j}$ for $i \neq j$,
- (iii) $\{p_i\}_{i=1}^{\infty}$ has a limit point in X.

Now let $q_{\beta} \in D_{\beta}$ for each $\beta \in B$ and define $p_{\beta} = q_{\beta}$ for all $\beta \notin \{\beta_i \colon i=1,2,\cdots\}$. Then $P = \{p_{\beta} \colon \beta \in B\}$ has a limit point while $Q = \{q_{\beta} \colon \beta \in B\}$ does not. This contradicts the fact that \mathcal{G} is an \mathcal{F} -ppc collection. Hence $\{G_{\beta} \colon \beta \in B\}$ is locally finite.

Remark: If \aleph -ppc is replaced by ppc in the above theorem then $\{G_\beta\colon \beta\in B\}$ is locally finite in each case.

Theorem 2.5 Let X be a regular q-space. Then X is paracompact iff X is \aleph -ppc and irreducible.

Proof: The necessity is clear. Let X be X-ppc and irreducible and let $\mathfrak U$ be any open cover of X. Then $\mathfrak U$ has an open X-ppc refinement $\mathfrak S=\{G_\alpha\colon \alpha\in A\}$. Since X is irreducible $\mathfrak S$ has an open refinement $\mathfrak K$ which covers X minimally. By Lemma 2.2 above we may assume that $\mathfrak K=\{H_\beta\colon \beta\in B\}$ where $H_\beta\subseteq G_\beta$ for each $\beta\in B\subseteq A$. By Lemma 2.3 there exists a discrete collection of non-empty closed sets $\{D_\beta\colon \beta\in B\}$ such that $D_\beta\subseteq H_\beta$ for each $\beta\in B$. Therefore, $\{G_\beta\colon \beta\in B\}$ is a σ -locally finite open refinement of $\mathfrak U$, and hence X is paracompact by Theorem 1 of [7].

Corollary 2.6 Let X be a q-space. Then X is paracompact iff X is ppc and irreducible.

Proof: The proof follows immediately from the remark after Theorem 2.4 above.

256 Smith

Corollary 2.7 Let \boldsymbol{X} be a regular q-space. Then the following are equivalent:

- (1) X is paracompact.
- (2) X is \aleph -ppc and θ -refinable.
- (3) X is \aleph -ppc and weak $\overline{\theta}$ -refinable.

Proof: In [9] the author has shown that θ -refinable and weak $\overline{\theta}$ -refinable spaces are irreducible.

Remark: It should be noted at this point that the above results (assuming regularity) remain true when \aleph -ppc is replaced by σ - \aleph -ppc by Theorem 2.4.

3. & O-refinable Spaces

In [1] Aull proved that \aleph_1 -compact $\delta\theta$ -refinable spaces are Lindelöf and in [8] the author obtained an analogous result for weak $\overline{\delta\theta}$ -refinable spaces.

Definition 3.1 A space X is called $\delta\theta$ -refinable if every open cover X has a refinement $\mathfrak{g}=\bigcup_{i=1}^{\infty}\mathfrak{g}_{i}$ satisfying,

- (i) each g is an open cover of x.
- (ii) for each $x \in X$ there exists an integer n(x) such that $\operatorname{ord}(x, \mathfrak{G}_{n(x)}) \leq \aleph_0$.

Definition 3.2 A space X is called weak $\overline{\delta\theta}$ -refinable if every open cover of X has a refinement $\mathfrak{G}=\bigcup_{i=1}^{\infty}\mathfrak{G}_{i}$ satisfying,

- (i) each \mathcal{G}_{i} is a collection of open subsets of X.
- (ii) for each $x \in X$ there exists an integer n(x) such that $0 < \operatorname{ord}(x, \, ^{\mathfrak{S}}_{n(x)}) \leq \, ^{\aleph}_{o}.$
- (iii) $\{G_i^* = U\{G: G \in \mathcal{G}_i\}\}_{i=1}^{\infty}$ is point finite.

Even though $\delta\theta$ -refinable spaces need not be irreducible it is natural to ask whether similar results to those in §2 can be obtained since such spaces are generalizations of θ -refinable spaces. Here we provide such results using the notion of maximal

distinguished sets, due to Aull [1].

Let $\mathfrak U$ be an open cover of a topological space X. Definition 3.3 A set M is distinguished with respect to $\mathfrak A$ if for each pair x, $y \in M$ with $x \neq y$, then $x \in U \in \mathcal{U} \Rightarrow y \notin U$.

Lemma 3.4 For every subset M of a space X and every open (in X) cover U of M, there exists a maximal distinguished set with respect to \mathfrak{A} which is discrete in $U\{u: u \in \mathfrak{A}\}$.

Theorem 3.5 Let X be a regular q-space. Then X is paracompact iff X is \aleph -ppc and $\delta\theta$ -refinable.

Proof: Let X be \aleph -ppc and $\delta\theta$ -refinable and let \mathfrak{A} be an open cover of X. Then $\mathfrak A$ has an \aleph -ppc refinement $\mathfrak G=\{\mathsf G_\alpha\colon \alpha\in \mathtt A\}$. Since X is $\delta\theta$ -refinable, θ has a refinement $\mathbf{U}_{i=1}^{\infty} \mathcal{D}_{i}$ satisfying,

- (i) each $\mathcal{W}_i = \{W(\alpha, i) : \alpha \in A\}$ is an open cover of X,
- (ii) for each $x \in X$, there exists an integer n(x) such that ord(x, $g_{n(x)}$) $\leq \aleph_0$.

As before we may assume $W(\alpha,i)\subseteq G_{\alpha}$ for each $\alpha\in A$ and each i. Now let $H_n = \{x: \operatorname{ord}(x, \mathcal{G}_n) \leq \aleph_0\}$ so that $X = \bigcup_{n=1}^{\infty} H_n$. Let M_n be a maximal distinguished set of $\mathbf{H}_{\mathbf{n}}$ with respect to $\mathbf{9}_{\,\mathbf{n}}$ for each n. By Lemma 3.4 the collection of singletons of points of each M_n is a discrete collection in X. By Theorem 2.4 above H_n is covered by a σ -locally finite subcollection of \mathfrak{W}_n for each n. Therefore $\mathfrak A$ has a σ -locally finite open refinement, and hence X is paracompact.

The analogous result for weak $\overline{\delta\theta}$ -refinable spaces is also true. The proof is a modification of the one above and hence is omitted.

Theorem 3.6 Let X be a regular q-space. Then X is paracompact iff X is \aleph -ppc and weak $\overline{\delta\theta}$ -refinable.

4. Normal-q-spaces

258 Smith

In [5] Briggs obtained the following result using a somewhat involved argument. We now generalize this result using a theorem of Zenor [11].

Theorem 4.1 (Briggs) Let X be a normal q-space. If X is X-ppc, then X is collectionwise normal.

Theorem 4.2 (Zenor) A space X is collectionwise normal iff for each discrete collection $\{F_\alpha\colon \alpha\in A\}$ of closed sets, there exists a sequence of collections $\{V(\alpha,i)\colon \alpha\in A\}_{i=1}^\infty$ of open subsets of X satisfying,

- (i) $\{V(\alpha,i)\}_{i=1}^{\infty}$ covers F_{α} for each $\alpha \in A$,
- (ii) $F_{\alpha} \cap [U_{\beta \neq \alpha} V(\beta, i)]^{-} = \emptyset$ for each $\alpha \in A$ and each i.

Theorem 4.3 Let X be a normal q-space. If X is σ - \aleph -ppc, then X is collectionwise normal.

Proof: Let $\{F_\alpha\colon \alpha\in A\}$ be an uncountable discrete collection of closed subsets of X. Since X is normal there exists for each $\alpha\in A$ an open set G_α containing F_α such that $\overline{G}_\alpha\cap [\bigcup_{\beta\neq\alpha}F_\beta]=\emptyset$. We may assume that $0\not\in A$. Then let $G_0=X-[\bigcup_{\alpha\in A}F_\alpha]$, and $\mathfrak{G}=\{G_\alpha\colon \alpha\in A\}\cup \{G_0\}$. Since X is $\sigma-\aleph$ -ppc, \mathfrak{G} has a refinement $\bigcup_{i=1}^\infty \mathcal{H}_i$ where $\mathfrak{H}_i=\{H(\alpha,i)\colon \alpha\in A\}$ has the \aleph -ppc property and $H(\alpha,i)\subseteq G_\alpha$ for each $\alpha\in A$ and each $\alpha\in A$. Let $\mathfrak{H}_i=\{H(\alpha,i)\colon H(\alpha,i)\cap F_\alpha\neq\emptyset\}$ for each $\alpha\in A$. Then by Theorem 2.4, each $\mathfrak{H}_i=\{H(\alpha,i)\colon G_\alpha\in A\}_{i=1}^\infty$ satisfies the conditions of Theorem 4.2 above. Therefore X is collectionwise normal.

Briggs [5] used several examples to demonstrate the necessity of a special setting (q-spaces) in order to study the relationships between preparacompact spaces and other more common generalizations of paracompactness. These examples are summarized here for the benefit of the reader. For more details see [5].

Example I: A countably compact, first countable, normal
q-space which is ppc and collectionwise normal but not paracompact.

Example II: A first countable, collectionwise normal q-space which is not \aleph -ppc.

Example III: A normal, metacompact, ppc space which is not collectionwise normal.

Example IV: A regular, locally countably compact q-space which is \aleph -ppc and σ -ppc but not ppc.

 $\textit{Example V:} \ A \ regular, \ countably \ compact, \ q-space \ which is ppc but not normal.$

Example VI: A metacompact, first countable, Lindelöf q-space which is \aleph -ppc but not regular.

Several interesting open questions remain:

- (1) Is every regular, first countable, ppc space normal?
- (2) Is Theorem 3.5 true for weak θ -refinable spaces?
- (3) In what setting, other than q-spaces, are the above results true?
- (4) When are ppc spaces expandable?
- (5) When are ℵ-ppc spaces countably paracompact?

References

- C. Aull, A generalisation of a theorem of Aquaro, Bull. Aust. Math. Soc. 9 (1973), 105-108.
- 2. H. R. Bennett and D. J. Lutzer, A note on weak θ -refinability, Gen. Top. Anal. 2 (1972), 49-54.
- J. Boone, On irreducible spaces, Bull. Aust. Math. Soc. 12 (1975), 143-148.
- 4. _____, On irreducible spaces II, Pacific J. Math 62 (1976), No. 2, 351-357.
- R. C. Briggs, Preparacompactness and ℵ-preparacompactness in q-spaces, Colloq. Math. (1973), 227-235.

- 6. U. Christian, Concerning certain minimal cover refinable spaces, Fund. Math. 76 (1972), 213-222.
- 7. E. Michael, A note on paracompact spaces, Proc. Amer. Math. Soc. 4 (1953), 831-838.
- 8. J. Smith, Properties of weak $\overline{\theta}$ -refinable spaces, Proc. Amer. Math. Soc. 53 (1975), 511-517.
- 9. _____, A remark on irreducible spaces, Proc. Amer. Math. Soc. 57 (1976), 133-139.
- 10. J. M. Worrell, Jr. and H. H. Wicke, Characterizations of developable topological spaces, Canad. J. Math. 17 (1965), 820-830.
- P. Zenor, Some continuous separation axioms, Fund. Math. 90 (1975/76), No. 2, 143-158.

Virginia Polytechnic Institute and State University Blacksburg, Virginia 24061