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A SURVEY OF MAXIMAL TOPOLOGICAL SPACES

Douglas E. Cameron

1. Introduction

For a topological property R and a set X, the collection
R(X) of all topologies on X with property R is partially
ordered by set containment. A member T of R(X) is maximal
R (R-maximal) if T is a maximal element of R(X). Character-
izing R-maximal spaces and determining which members of R(X)
are strongly R (that is, for which topologies there exist
finer maximal R topologies) are the main areas of interest
in the study of maximal topologies. Properties of minimal R
topologies are also studied and a compilation of known
results has been done for minimal spaces [5]. It is our
intention in this article to include all known results in the
study of maximal spaces including related results in the
theory of topological expansions. We realize that we may have
missed some references but have included all those known to
us in the bibliography.

The first result concerning minimal or maximal topolo-
gies is that every one-to-one continuous mapping of a Haus-
dorff compact space into a Hausdorff space is a homeomorphism
(i.e., a Hausdorff compact space is minimal Hausdorff).

This result has been credited to A. S. Parhomenko [41] based
upon a German summary to a Russian article. A recent trans-
lation [42] of the article reveals that Parhomenko credits
either P. Alexandrov and H. Hopf [1l] or F. Hausdorff [26]

with the result.
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In 1943, E. Hewitt [27] showed that a compact Hausdorff
space is maximal compact as well as minimal Hausdorff. While
Hewitt did not state his result in these terms, he did use the
term "maximal" in the sense it is used today. 1In 1947, R.
Vaidyanathaswamy [57] observed the same result as Hewitt and
questioned the existence of maximal compact spaces which are
not Hausdorff. (He used the term "minimal compact.") In 1948,
A. Ramanathan [44] characterized the maximal compact spaces as
those compact spaces in which the compact subsets are precisely
the closed sets, and exhibited a maximal compact space which
is not Hausdorff, thus answering Vaidyanathaswamy's question.
H. Tong [54] and V. K. Balachandran [4] also obtained examples
of maximal compact spaces which are not Hausdorff.

In 1963, N. Smythe and C. A. Wilkens [48] characterized
maximal compact spaces as A. Ramanathan had, and gave an ex-
ample of a maximal compact space which is not Hausdorff but
for which a finer minimal Hausdorff space exists. In 1964,

N. Levine [36] introduced the concept of simple expansion and
in 1965 [37] discussed spaces in which the compact and closed
sets are the same (maximal compact spaces) proving that the
product of a maximal compact space with itself is maximal
compact if and only if the space is Hausdorff.

S. Ikenaga and I. Yoshioka [28] discussed preservation
of topological properties under expansions in 1965 and this
work was supplemented by C. J. Borges, Jr. [7] in 1967.

J. P. Thomas studied maximal spaces not possessing certain
separation properties in 1967 [51] and in 1968 published
his paper on maximal connectedness in which he asked whether

or not maximal connected Hausdorff spaces existed [52]. This
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paper spurred research in maximal topologies and since this
time many papers and theses have appeared investigating maxi-
mal topologies and most of these appear in the bibliography.

The question has recently been answered affirmatively [25].

2. Techniques and Methods

The method used in constructing finer topological spaces
from a given topological space is the simple expansion. This
concept was first introduced as a construction tool by N.
Levine [36] in 1964 although a similar concept had been dis-
cussed by E. Hewitt in 1943 [27]. We shall use Hewitt's

terminology rather than Levine's term "simple extension."

Definition 2.1, If 1, and 1., are topologies on a set

1 2

is an expansion of Ty if T, ST, (T2 is said to be

is coarser (weaker) than 12).

X, T2

finer (stronger) than Ty or T,

An expansion 71, of Ty is a simple expansion of Ty if there

2
is a subset A of X such that T, U {A} is a subbase for T,-
In other words, T, is a simple expansion of Ty if there

is A < X such that 1, = {UU (V0 A)|U, V€ 1;}. The simple

2
expansion of T by A shall be denoted T(A).

Theorem 2.1 [36]. 1In the following, (X,T) s a topologi-
cal space, A, B < X, ™ = 1(A).

(a) antT*B = LntTB U int B N A)

TlA(
(b) el 4B =cl B0 ((X-A) U (A N el (BN A))

(e) (A, T|A) = (A, T*|A)
(X-a, T|(X-A)) = (X-A, 1*|(X-A))
(d) el (B n A) = cl 4(Bn A)

(e) A is closed in t* 1f and only <f A is closed in T.
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(f) If F is closed in T or 1%, then F n A is closed in

(A, t|A) and F n (X-RA) is closed in (X-A, T|(X-R)).

Definition 2.2. If (X,T) is a topological space, and
7 = {Au c X|o € A} is a collection of subsets of X, then the
topology T* on X which is the coarsest topology on X which
is finer than T(Aa) for each o € A shall be denoted by t(F).

1f 7 is a topology on X, then t(F) = F(1) =t V 7.

Theorem 2.2 [50]. If (X,1) <8 a topological space, A,
B c X, then

(a) T({A,B}) = (1(A))(B);

(b) T(A) < 1(B) Zif and only <if (deA) nAac (deB) naBsB
and there is U € T such that U N B = A N By

(e) 1(A) = 1(B) <f and only if either of the following
hold:
() (deA) na-s=s (deB) N B and there are U, V € 1

such that U N B =A NB =V NA.

(1) (de) NA= (bd B) N B and

T
AN cZT(B—A) = ¢ = BN cZT(A—B).

Theorem 2.3 [50]. If (X,t) Zs a topological space,
7=1a, c X|a € A}, then
(a) T(F is equivalent to a well-ordered succession of
simple expansions;
(b) T(H = T(U{Au|u € AY) 1f and only if

A@l n cZT(U{Ad|a € A - {a;}}) = ¢ for every a; € A.

Theorem 2.4 [50]1. If T, and T, are topologies on X
then T, €T, if and only if there is a family 7 of subsets

of X such that T, = Tl(})'
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3. Preservation Under Expansions

In this section, we report results concerning preserva-
tion of topological properties under expansions. This is of
importance since this is an underlying concept in determining

maximal topologies for given topological properties.

Theorem 3.1. (a) [36] If (X,T) s T, then (X, T(A)) is
T, for all A =X, i =0,1,2.

(b) [36] If (X,1) Zs R € {compact, countably compact,
Lindeldf} then (X, T(A)) is R if and only if
(X~a, t|(X-2)) is R.

(e¢) [36] If (X,T) is second countable, then (X, T(A))
is second countable.

(d) [36] If (X,t) Zis separable then (X, T(A)) is separa-
ble if and only if (A, T|BA) is separable.

(e) [7]1 If (X,1) is R € {separable, second countable}
and (A, T|A)) is R, then (X, t({A_|n € |N})) s R.

(f) [14]1 If (X,T) is R € {K-dense, caliber-K, Sanin,
countable chain condition}, and (A, TIA) 18 R, then

(X, t(a)) <s R.

Definition 3.1, A subset A of a topological space

(X,T) is R-open if A € TlclTA.

Definition 3.2. A subset A of a topological space
(X,T) is locally celosed if A is the intersection of an open

set and a closed set.

Theorem 3.2. Let (X,T) be a regular space, A < X.
The following are equivalent.

(a) (X, T(R)) is regular.
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(b) [47, 28, 7] (aZTA) - A is closed in T.
(¢) [47, 28] A <s R-open.

(d) [47] A is locally closed.

Theorem 3.3. If (X,1) is a regular space, A, B © X then
(a) [36] (X, T(A)) is regular if A is closed.
(b) [36] If A is dense in X, A % X, then (X, T(A)) is
not regular.
(e) [28] If (X, T(A)) and (X, T(B)) are regular then
(X, T(A n B)) is regular.
(d) [501 If (X, t*) is regular then (X, T V T*) is regu-

lar.

Theorem 3.4 [47]. If R is a topological property such

that

(i) R implies regularity
(i27) R is closed hereditary, and

(1i1) R 1s preserved under finite unions of closed sets,
J

then (X, T(A)) has property R if (X, T(A)) is regular and

(X-A, T(X-A)) has property R.

Theorem 3.5 [47]. If Q is a topological property such

that

(i) Q implies regularity

(it) Q is hereditary on arbitrary subsets,

then (X, T(A)) has property Q if and only if (X, T(A)) <is

regular.

Theorem 3.6 [28]. If P is a topological property such

that

(1) P 18 open (closed) hereditary
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(ii) for A, B separated such that (A, tT|A) and (B, T|B)
has property P,
then (A U B, t|(A U B)) has property P. For A € X such that
X -A €1, (X, ©(B)) has P if and only if (A, T|B), (X-A,

T| (X-A)) has property P.

While many topological properties satisfy the properties

of Theorem 3.6, connectedness does not.

Theorem 3.7 [7}. In a Tl—spaae (X,1), (X, T(A)) has
property P € {complete regularity, normality, collectionwise
normality, paracompactness, stratifiability, or metrizability}
1f and only i1f (X,1) has property P, (X, T(A)) is regular and

(X-A, T(X-A)) is normal for all except complete regularity.

Theorem 3.8 [36). If (X,t) is completely regular
(Tychonoff), A & T but X - A € 1 then (X, T(A)) is completely

regular (Tychonoff).

Theorem 3.9 {361. If (X,t) Zs normal and X - A € T,
then (X, T(A)) is normal if and only if (X-A, tT|(X-A)) is

normal.

Theorem 3.10 [46]1. If (X,T) is Hausdorff and P € {regu-
larity, complete regularity, normality, paracompactness,
stratifiability, metrizability, metacompactness}, then
(X, T(A)) has P if and only if A is locally closed and

(X-A, T|(X-A)) has property P.

Theorem 3.11 [7]1. In the following all spaces are Ty .
(a) If (X,T) is paracompact regular, then (X, T|A)) is

paracompact regular 1f and only i1f (X, T(A)) <Zs
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regular and X - A is paracompact in (X,T).

(b) If (X,1) has P € {complete regularity, hereditary
normality, perfectly normal, hereditary paracompact-
ness, stratifiability, metrizability} then (X,1) has
P i¢f and only <if (X, tT(A)) <is regular.

(e¢) If (X,1) has P € {normality, Lindeldf, compactness,
countable compactnessl then (X, T(A)) has P if and
only 1f (X, T(A)) is regular and (X-A, t1|(X-A)) has

P.

Theorem 3.12. If (X,t) i1s connected and A < X, then
(X, t(A)) is connected if
(a) [36, 45] A is a connected dense subset of X;
or (b) [25, 24] A is a connected dense subset of U € T;
or (¢) [71 X - A ¢ 1 and (A, T|A) and (X-BA, 1|(X-B)) are
connected
or (d) [24]1 (X-A, T|(X-d)) is connected and no component of
A is T-closed.
or (e) [24] A is connected and no union of components of
X - A is open.
or () [24] A has a connected component and X — A € T.
or (g) [24] and only if there exists no nontrivial C < X
such that
(i) ¢ n A€ 1]A
(ii) (X-C) N A € T|A
(Zi2) € n (X-A) € T|(X-A U X-C)

(iv) (X-C) n (X-A) € 1| ((X-A) U Q)

Theorem 3.13 [7]. If (X,T) is pathwise connected,

X-2A¢ T and (cZTA, T|cZTA) and (X-A, T|(X-A) are pathwise
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connected, then (X, T(A)) is pathwise connected.

Theorem 3.14 [46]. If n € N, P € {regularity, complete
regularity, normality, paracompactness, stratifiability,
metrizability, metacompactness} A = {Ai|l < i <n}and
(X, T(Ai)) has property P for 1 < i < n, then (X, T(A)) has

property P.

Theorem 3.15 [46]. If (X,1) s T, and has property
P € {regularity, complete regularity}, and A = {AB|B ¢ B}
such that (X, T(AB)) has property P for each B € B, then

(X, T©(A)) has property P.

Example 3.1 [46]. The preceding does not hold for
normality since the Sorgenfrey line is the expansion of the
usual topology of the reals by the family of half open

intervals.

Theorem 3.16 [7]. If P € {metrizability, perfect
normality, perfectly paracompact, regular-hereditary Lindeldf,

stratifiable}, (X,T) 28 T A= {An|n € N} such that

l’
(X, T(A))) is regular for each n € N, then (X, T(A)) has

property P.

Definition 3.3. A collection F = {A |a € A} is R-open
in (X,T) if and only if for sets F, G, H which are intersec-
tions of a finite number of members of 7 and for each x € F
there is a neighborhood V(x) of x and a G containing x such
that for each y € V(x) 0 (clTG - F) there is H containing y

such that y ¢ cl (H nG).

Theorem 3.17 [28]. (a) If ¥ = {A |a € A} is a family
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of subsets of X and (X,1) ig regular, then (X, T(F)) is
regular if and only if F is R-open in (X,1).

(b) If (X,1) is metrizable and F = {Aa|a € A} is a

o-locally finite collection, then (X, T(})) is

metrizable if and only if F is R-open in (X, 1) .

Theorem 3.18 [46]. If (X,1) <& Hausdorff and has
property P € {paracompact, normal metacompact, metrizable,
stratifiable} and F = {Aala e A} sueh that (X, T(Aa)) has
property P, then (X, tT(})) has property P.

The preceding result holds for a property which is

(i) preserved by finite expansions

(ii) weakly hereditary

(iii) dominated by a locally finite collection of closed
sets, and

(iv) implies paracompactness [34].

Theorem 3.19 [45, 24, 27]. If (X,T) is connected and
7= {Aa|a € A} is a collection of subsets of X such that
finite intersections of members of F are demse, then (X, 1(F))

18 connected.

4. General Results

In this section we discuss results which apply to cer-
tain classes of topological properties. In later sections we
shall discuss specific results for many specific properties.

R. shall denote a topological property.

Theorem 4.1 [11]. A topological space (X,T) is maximal
R 2f and only if every continuous bijection from a space

(Y, T') with property R to (X,T) is a homeomorphism.
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Definition 4.1. A topological property R is contractive
if (X,t) has property R and 1t' = 1 then (X,1') has property

R.

Definition 4.2. A topological property R is (open,
closed, regular closed, point) hereditary if all (open,
closed, regular closed, one point) subsets of a space with

property R also have property R.

Definition 4.3. A topological property R is:

(1) open expansive if (X,t) has property R and A < X has
property R then (X, t(A)) has property R.

(2) closed expansive if (X,T) has property R and A c X

has property R then (X, 1(X-A)) has property R.

The covering axioms of compactness, countable compact-
ness and Lindeldf as well as Bolzano-Weierstrass compactness,
sequential compactness and connectedness are all contractive,

closed hereditary and closed expansive and point hereditary.

Definition 4.4. The graph of f: (X,t) + (Y,{) is an
R-graph if the graph has property R as a subspace of

(Xxy,tx{) .

Theorem 4.2. Let property R be contractive, closed
hereditary, and closed expansive. Then the following are
equivalent for a topological space (X,T) with property R:

(1) (X,T) Zs maximal R;

(2) [11, 30] the subsets with property R are precisely

the closed subsets;

(3) [30] any continuous surjection from an R-space to X
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(4)

(5)
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i8 a closed quotient map;

[30] any function with a R-graph from X is continu-
ous;

[30] any funetion with an R-graph into (X,1) is

closed.

Theorem 4.3 [11]. (a) A topological property R is con-

tractive

Jections.

(b)

(e)

(d)

(e)

(f)

(g)

if and only if it is preserved under continuous bi-

If R is a contractive topological property, then
(X,7) is maximal R if and only if for A § 1,

(X, t(A)) does not have property R.

If property R is contractive, closed and point
hereditary, and is closed expansive, and the maximal
R spaces are Tl'

If property R is contractive, closed hereditary and
closed expansive, then in maximal spaces the R sub-
sets are maximal R in their relative topologies.

Let property R be contractive, closed and point
hereditary and closed expansive. If (HBXB,HBTB)

18 maximal R, then (XB,TB) 18 maximal for each

g € 8.

[16] If property R is contractive and productive and
(Hﬂxa'nﬂfa) is8 maximal R, then (xa,ra) 18 maximal R
for 3 € A.

Let property R be contractive, closed hereditary and
closed expansive. If (X,t) is R, then (XXX,TxT) <8

maximal R only i1f (X,T) is Hausdorff.

Theorem 4.4 [1l]. (a) Let property R be contractive,
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closed hereditary and closed expansive. If (X,1) is maximal
R, X = U{AB: B € B}, and (AB,T/AS) has property R for each
,T/A

B € B then AB 18 T elosed and (A B) 18 maximal R for each

B
B € B.

(b) Let R be contractive, closed hereditary and closed
expansive, and satisfy the condition that a space
which is the finite union of subspaces with property
R also has property R. If B is a finite set, X =
U{AB|B € B}, and (AB,TIAB) has property R for each
B € B, then (X,t) is maximal R if and only if Ag is

T closed and (AB,T|AB) is maximal R for each B € B.

If R is a contractive property and (X,T) is strongly R,

then (X,t) has property R.

Theorem 4.5 [11l]. (a) Let property R be contractive,
elosed and point hereditary and closed expansive. A space
(X,1) with property R is strongly R if (X, t V F) is strongly
R where F} is the topology of finite complements.

(b) Let property R be contractive, closed hereditary and

closed expansive. Strongly R is closed hereditary.
(e) Let property R be contractive, closed hereditary and
closed expansive. If the product of T, spaces is
strongly R, thenm each coordinate space is 8strongly
R.

(d) Let property R be contractive, closed hereditary and
closed expansive. If some infinite product of Tl
spaceg of more than one point is strongly R, then

the Cantor set is strongly R.
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Definition 4.5. The dispersion character At of a
topological space (X,1) is the least cardinal number of a

nonempty open set.

Definition 4.6. A topological space (X,T) is k-maximal

if At > ¢ and whenever 1' o 1, AT' < k.

Theorem 4.6 [27]. (a) The dispersion character of a
T -space 28 1 or an infinite cardinal.
(b) If «x 18 an infinite cardinal number, or 1, then
every T topological space (X,T) with At > 1 s
strongly k-maximal; moreover the finer k-maximal

space is Tl.

Definition 4.7. A topological space (X,tT) is submaximal

if every dense subset is open.

Theorem 4.7 [32]. If At > k where K is an infinite
cardinal, then the following are equivalent:

(1) (X,T) i8 K-maximal;

(2) (X,7) is extremally disconnected and submaximal;

(3) Every dense-in-itself set in (X,T) is open;

(4) Every topology an X, which is strictly finer than

has isolated points (i.e., (X,T) 18 2-maximal).

Theorem 4.8 [32]. Let (X,T) be a topological space
with infinite dispersion character. Then there exists a
At-maximal topology tT' for X which is stronger than T and

such that cZTS = cZTintTcZTS whenever S is T'-open.

Theorem 4.9 [17]. If property R ig open (closed)

expansive then (X,1) is maximal hereditary R with At i1f and



TOPOLOGY PROCEEDINGS Volume 2 1977 25

only if (X,1) Zs At-maximal.

Definition 4.8. If R is a topological property such that

(X,t) has R whenever a dense subset has R, then R is contagi-

Ous.

Kk-dense, Sanin, Caliber «, and the countable chain
condition are contagious, open hereditary, and open expansive.

Second countable is not contagious.

Definition 4.9. For a topological property R, we shall
say that (X,t) is A-maximal R if (X,t) has property R and

for t' > T such that At' = At, (X,1) does not have property

R.

Theorem 4.10 [14]. If property R is contractive, open
hereditary, and open expandable,

(a) then (X,T) is A-maximal R if and only if (X,t) has
property R and for all G = X, G § T such that
(G, T|G) has property R, A(T]|G) < At.

(b) then A-maximal R is open hereditary.

(c¢) and contagious then a A-maximal R space i8 extremally
disconnected.

(d) and contagious then a A-maximal R space (X,T) is

connected 1f and only <if every open set is dense in

X.

Definition 4.10. A topological space (X,T) is semi-
regular if the regular open sets are a base for 1. The semi-
regularization Tg of a topology T is the topology which has

the regular open sets of T as its base. A topological
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property R is semi-regular if (X,t) has property R if and
only if (X,Ts) has property R. If (X,t) is maximal with
respect to the property that if 1' > 1T then T; # Tgr then

(X,t) is submaximal.

Connectedness, pseudocompactness, H-closed, QHC, and

lightly compact are semi-regular.

Theorem 4.11 [16]. If property R is semi-regular then

a maximal R topology is submaximal.

Theorem 4.12 [16]. If property R is contractive, semi-
regular, regular closed hereditary, contagious and preserved
by finite unions
(a) then a submaximal space (X,t) with property R is
maximal R if and only if for any A < X such that both
X - int A and A have property R, then A is closed.

(b) then a submaximal space in which every subspace with
property R is closed is maximal R.

(c) then maximal R spaces are T, ¢f R 18 point hereditary.

5. Compactness
The examples of Hing Tong [54], A. Ramanathan [44],

V. K. Balachandran [4] and N. Smythe and C. A. Wilkens [48]
showed that maximal compact spaces are not necessarily Haus-
dorff. Of these we shall just exhibit the Smythe and Wilkens
example (Example 5.la) since there is a finer Hausdorff
topology which is minimal (Example 5.1b). Hing Tong's example

appears as Example 1l.1l(a).

Example 5.1. (a) Let X = {A,B} y R where R is the
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real numbers. The topology T on X is determined as follows:
X € R has the usual neighborhood base; the neighborhood base
for A consists of all sets of the form

u = {a} v {(2r - 1, 2r)||x| > n, r an integer}
for some positive integer n;

the neighborhood base for B consists of all sets of the
form

v(n,dr) B} U ((2r -4, 2r + 1 +d)|[|r| > n, r is
an integer}
for some positive integer n and dr >0, dr varies with each
r and with each n.

(b) Let X = {A,B} U R with the neighborhood bases for
A and the points in R the same as in Example 5.la. The
neighborhood base for the point B consists of all sets of
the form

v, = B} U {(2r, 2r + 1): |r| > n, r an integer}
for some positive integer n.

The one point compactification of the rationals with
the usual topology is maximal compact but not Hausdorff
since the rationals are not locally compact [37]. Hausdorff
quotients of compact spaces are maximal compact, but the

following example shows that T, quotients of maximal compact

spaces are not necessarily maximal compact.

Example 5.2 [11]. Let (Yi,ri)be the one point com-
pactification of N with the discrete topology and Y; the
added point for i =1, 2. Let (X,t) be the free union of
(Yl,Tl) and (YZ,TZ). Then (X,T) is maximal compact. Let

X* = {yl,yz} U N and t* the topology on X* having as a base
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of open sets {n} for n € N, {yl} U (N - A) and {yz} U (N - B)
where A and B are arbitrary finite subsets of N. This space
is T, and is not maximal compact since {yl} U N is compact

but is not closed.

6. Countable Compactness
Theorem 6.1 [11]. (a) A countably compact space (X,T)

is maximal countable compact if and only if for every
G € 1, there is a sequence S < X - G with no adherent points
in X - G.
(b) For countable spaces, maximal countable compactness
is equivalent to maximal compactness.
(e¢) In a maximal countably compact space every convergent

sequence has a unique limit,

Definition 6.1. A topological space is an Eo space if
every point is a GG’ A topological space is an El space if
every point is the intersection of a countable number of

closed neighborhoods.

Theorem 6.2 [3]. (a) El spaces are Hausdorff.

(b) First countable Hausdorff spaces are El'

Theorem 6.3. (a) [3] Every countably compact E, space
is maximal countably compact and minimal Eq.
(b) [3] In an E, space, all the countable compact sub-
sets are closed.
(e¢) [11l] The countable product of countably compact E;

spaces 1s maximal countably compact.

Example 6.1 [11]. (a) The ordinals less than the
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first uncountable ordinal @ with the usual topology is

countably compact and E;, and is therefore maximal countably

1

compact and minimal E., and is not compact.

1

(b) The ordinals less than or equal to the first un-
countable ordinal with the usual topology is a Hausdorff
compact space and is therefore maximal compact. It is a
countably compact space but is not maximal countably compact.
The simple expansion of this topology by {Q} is maximal
countably compact and is not compact.

(c} If (X,t) is a Hausdorff completely regular space,
then the Stone-Cech compactification BX is maximal compact
but is not necessarily maximal countably compact; for
example, BN where N is the natural numbers with the usual
topology.

(d) Theorem 6.3c does not extend to arbitrary products
since BN is embeddable as a closed subset of products of
[0,1] with the usual topology and BN is not maximal countably

compact.

Definition 6.2. Let (X,T) be a noncountably compact
space; X* = X y {xo}, Xy ¢ X; t* =1 U {G < x*: X, € G and
X - G is a closed countably compact subset in (X,T)}. (X*,1%)

is the one point countable compactification of (X,T).

Definition 6.3. In keeping with the literature, we may
say that a topological space is locally countably compact if
(i) Every point has a countably compact neighborhood;
or
(ii) Every pcoint has a neighborhood whose closure is

countably compact; or
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(iii) Every neighborhood of a point contains a neighbor-
hood whose closure is countably compact.
A space satisfying (iii) also satisfies (ii); a space

satisfying (ii) also satisfies (i); and an E, space satisfy-

1
ing (i) also satisfies (iii).

Theorem 6.4 [1ll]. The one point countable compactifica-
tion of a locally countably compact E, space 18 maximal

countably compact but is not necessarily Eo.

7. Bolzano-Weierstrass Compactness

Theorem 7.1 [11]. (a) A space is maximal Bolzano-
Weierstrass compact if and only if it is maxzimal countably
compact.

(b) A space is strongly Bolzano-Weierstrass compact if

and only 1f it is strongly countably compact.

(e¢) A strongly Bolzano-Weierstrass space is countably

compact.

(d) All Bolzano-Weierstrass compact spaces are not

strongly Bolzano-Weierstrass compact since there are
Bolzano-Weierstrass compact spaces which are not

countably compact.

8. Sequential Compactness
Theorem 8.1 [11]. (a) In a maximal sequentially compact
space convergent sequences have unique Limits.
(b) A sequentially compact space is maximal sequentially
compact if and only if it is maximal countably com-
pact.

(e) In an E; space maximal countable compactness is
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equivalent to maximal sequential compactness.

(d) An E. space is strongly countably compact if it is

1
strongly sequentially compact.
(e) The countably compact L* spaces [13, 2, 29] are

maximal sequentially compact.

Example 8.1 [11]. An Eo maximal sequentially compact

space which is not E, and is not an [*-space.

1
Let X = {a,b} U {(n,0): n € N} v {(n,m): n, m € N}.
The topology T on X is generated by the following neighbor-

hood bases:

U((n,m)) = {(n,m)}, n, m € N;
U,.((n,0)) = {(n,0)} u{(n,m:m>r}, reN;
U.(a) =1{al U{(nm:n>r, meN}, reN;

Ur(b) {b} U {(n,m): n

v

r, m> an} U {(n,0): n>r}
where a, varies with each r and for each n in the particular

neighborhood, r € N.

9. Lindelof

Definition 9.1. A topological space (X,1) is a quasi-
P-space 1if the space is T, and every Gg is open. A topologi-
cal space (X,T) is a P-space if it is quasi-P and completely

regular.

Theorem 9.1 [11]. (a) Every maximal LindelSf space is a
quasi-P-space.
(b) Every Hausdorff maximal Lindeldf space is a normal
P-space.
(¢) In a Hausdorff quasi-P-space, LindelSf subsets are

closed.
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(d)

(e)

(f)

(g)

(h)

()

(g)

(k)

(1)

Cameron

Every Lindeldf Hausdorff quasi-P-space is maximal
Lindeldf and minimal Hausdorff quasi-P.

Every Lindeldf P-space is maximal Lindelsf and
minimal P.

A maximal Lindellf space is first countable, second
countable, or separable if and only if it is counta-
ble.

A maximal Lindeldf space (X,t1) is compact, countably
compact, or sequentially compact if and only i1f X is
finite.

Finite products of maximal Lindeldf Hausdorff spaces
(minimal P-spaces) are maximal Lindeldf (miminal P).
Let (X,T) be a quasi-P-space such that X = U{Bi:

i € N} and (B, TlBi) is Lindeldf for i € N. Then
(X,T) is maximal Lindeldf <If and only if Bi is T
closed and (Bi’ T|Bi) is maximal Lindeldf for each
i€ N.

Let (X,T) be a completely regular Hausdorff space
such that every free z-filter with the countable
intersection property is contained in a z-ultra-
filter with the countable intersection property,
then the real compactification vX i1s Lindeldf.

If (X,1) is a Lindeldf space which has a cover of

G, sets which has no countable subcover, then (X,T)

$

is not strongly Lindeldf.
Let (Xa’Ta) be Lindelof spaces for which there exist
finer maximal Lindeldf Hausdorff topologies, o € A,

A finite. Then (Mg T gt.) te strongly Lindeldf.
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Example 9.1 [11]. This is an example of a maximal
Lindeldf space which is not Hausdorff and therefore not a
P-space.

Let X be the Cartesian plane together with two distinct
points a and b. The topology T on X is defined by the fol-
lowing basic neighborhood systems:

{(r,s)} is open for each point (r,s) in the plane;

for the neighborhood systems of a and b, select two
disjoint sets A and B such that A U B = R and |A| = |B| =
|R| where R is the set of real numbers; a neighborhood of a
is of the form

{a} U {(r,s): r ¢ A and s € R - Ar} where A is
arbitrarily chosen countable subset of R and differs with
each r € A and each neighborhood of a; a neighborhood of b
is of the form

{b} U {(r,s): Te R- (CuD}U {(r,s): r € C and
s € R - Cr} where C and D are arbitrarily chosen countable
subsets of B and A respectively; Cr is an arbitrarily chosen
countable subset of R which differs with each r € C; and C,

Cr and D differ with each neighborhood of b.

Definition 9.2. 1In keeping with the literature, we may
say that a topological space is locally Lindelof if
(i) Every point has a Lindeldf neighborhood; or
(1i) Every point has a neighborhood whose closure is
Lindeldf; or
(iii) Every neighborhood of a point contains a neighbor-

hood whose closure is Lindelof.

A space which satisfies condition (iii) satisifes
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condition (ii), and a space which satisfies condition (ii)
satisfies condition (i). A Hausdorff quasi-P-space satisfy-

ing condition (i) satisfies (iii).

Definition 9.3. Let (X,T) be a non-Lindel8f space and
x* ¢ X. Let X* = {x*} U X and t* the topology on X* such
that if G € T then G ¢ t* and if x* € G € t* then X* - G is
a closed Lindeldf subset of (X,T). The space (X*,t*) is

called the one point Lindeldf extension of t.

Theorem 9.2 [1l1l]. The one point Lindeldf extension of
a locally Lindeldf Hausdorff quasi-P-gspace is a Lindeldf

P-gspace and therefore is maximal Lindellf.

Example 9.2 [11]. (a) If (Xa,Ta) is an uncountably
infinite set with the discrete topology, the one point
Lindeldf extension (X&,T&) is maximal LindelSf. For a
cardinal number B, |A| = B, then the space (X,t) which is
the free union of (Xa,rg), o € A is locally Lindeldf. 1If
B > 80 then the one point Lindel8f extension of (X,t1) is
maximal Lindeldf with B non-isolated points and the isolated
points are dense.

(b) Assuming the continuum hypothesis, let X be an n;
set of cardinality ¢ and let T be the order topology. Then
(X,T) is a P-space but is not locally Lindeldf. However,
the one point Lindeldf extension of (X,T) is not Hausdorff

but is maximal Lindel&f, and has no isolated points.

10. Connectedness
The topological property which has provoked the most

interest in the study of maximal properties is connectedness.
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The first work in this field was done by J. P. Thomas in

1968 [52].

Theorem 10.1. (a) [45, 24, 43] Every maximal connected
topology is submaximal.
(b) [24] Every connected topology can be expanded to a

connected submazimal topology.

Example 10.1 [22]. A connected submaximal space which
is not maximal connected.

X {a,b,x,y}

T

{¢,{a},{b},{a,b},{a,b,x}{a,b,y},X}

Theorem 10.2 [24]. If (X,tT) ie a submaximal space with
At > 1, then

(a) discrete subspaces are closed;

(b) if |A| < AT, then A ie discrete;

(e) no point has a neighborhood base of cardinality <

AT,

Theorem 10.3 [24]. (a) No topology is maximal among the
connected first countable T, topologies.
(b) Edery connected subspace of a mazimal connected

space 18 maximal connected.

Ezample 10.2 [52]. (a) For X ¥ ¢, x_ € X the space
(X,7) where T = {¢} U {A ¢ X|xo € Al is maximal connected.
(b) For X ¥ ¢, X, € X, then the space (X,1) where
T = {x} U {a = X[x_ ¢ A} is maximal connected.

(c) For an infinite set X, and { an ultrafilter finer

than 3, the filter of finite complements, the



36 Cameron

topology T({/) is maximal connected and Tl'

Definition 10.1. An essentially connected space is a

connected space whose connected subsets remain connected as

subspaces of every expansion in which X remains connected.

Theorem 10.4 [22]. (a) Every connected subspace of

an essentially connected space is essentially connected.
(b) Let (X,1) be an essentially connected space and let
C be a connected subset having at least two points.

Then intTC + ¢ and if (X,1) 18 T then int C i8

l,
dense in C.
Definition 10.2. A space and its topology are called
prineipal if each point has a minimum neighborhood, or

equivalently, an arbitrary intersection of open sets is open.

Theorem 10.5 [22]. Apart from the indiscrete doubleton,
the concepts of essential and maximal connectedness coincide

for prineipal spaces.

Definition 10.3. If D is a dense subset of (X,t1), an
expansion 1' of T is D-maximal if it is maximal with respect

to the properties that 1'|D = 1|D and D is 1'-dense in X.

Theorem 10.6 [22]. If (X,t) is an essentially connected
space with a dense maximal connected subspace D, then every

D-maximal expansion of X is maximal connected.

Definition 10.4. A space is widely connected if it is

connected and every nonsingleton connected subspace is dense.

Theorem 10.7 [22]. (a) An essentially connected
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Tl-space is widely connected if and only if it has no cut
points.
(b) In a maximal connected space, every nonempty non-
dense open set has a cut point of X in its boundary.
(c) No widely connected Hausdorff space is maximal
connected.
(d) No connected Hausdorff space with a dispersion point

is strongly connected.

J. A. Guthrie, H. E. Stone, and M. L. Wage [25] have
recently used the following method to show the existence of
a maximal connected Hausdorff space (Theorem 10.15).

If T is a connected expansion of the Euclidian topology
6 for the real line R, and set P € R is pluperfect (relative
to t) if for every p € P and each component k of R-{p},

p € clT(P k).

Theorem 10.8 [25]. If t1(P) is connected, then P is

t-pluperfect; if 1 = £, this condition is also sufficient.

A set S is called singular at X € S (relative to T)
if S is pluperfect and S-{X} € 7. A filter of singluar
sets at X will be called a singular filter at X, and an
expansion o of 1 such that every point has a local base
which is a singular filter will be called a singular expan-

sion of T.

Theorem 10.9 [25]. A connected topology S is a dense-
invariant expansion of T 1f and only <if there is a connected

expansion of & which is a singular expansion of T.
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Theorem 10.10 [25]. Every dense filter expansion of a
singular expansion of £ is also a singular expansion of a

dense-filter expansion of ¢, and conversely.

Theorem 10.11 [25]. Every dense-ultrafilter expansion
of a connected mazimal singular expansion of { is a maximal

connected topology.

Theorem 10.12 [25]. Suppose {A,B} is a o-disconnection
of I = [0,1] and the set C(A,B) =1 = (inth U intéB). Then

(C,€) is homeomorphic to the Cantor set.

Theorem 10.13 [25]. Let o be a singular expansion of
€. Each of the following is a sufficient condition for
connectedness of o.

(a) The expansion is proper at fewer than (( points.

(b) Each o-neighborhood of each X contains an open

interval with end point X.

(c) The space (I,0) is normal.

Theorem 10.14 [25]. Suppose that all but countably
many points have local o-bases which are translates of a

given countable singular filter. Then 0 is8 connected.

Theorem 10.15 [25]. The real line admits a connected

maximal singular expansion.

Theorem 10.16 [25]. Every Euclidian space is strongly

connected.

I. Baggs [6] has given an example of a countable con-

nected topological space which is not strongly connected.
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To describe this space we need the following:

If P is a dense subset of the rationals with the rela-
tive topology T, a subset G ¢ P is an N-set if G = ¢ or if
for each x € G and for every b > x, the set {y € G|x <y < b}
has nonempty relative interior. A collection of N-sets which
is closed under finite intersections is an N-family. For
each x € P, 1etIx={yeP|x5y<x+1}and1et/ﬂbea
maximal N-family containing an N-family containing
{Ix|x € P} U {0 cP|O € T}.

If D is a subset of P, let Q = {D ¢ P|P - D is t-nowhere
dense in P}. Then there is a filter 7 containing Q such that
7 is maximal with respect to the properties

(i) o = 7,
and (ii) if F € 7, then F is 1-dense in P.

The topology o = 1 V 7 is maximal perfect (i.e., (P,0)
has no isolated points and any stronger connected topology

has an isolated point).

Example 10.3 [6]. Let {Ei}1:+oo be a countable, disjoint
collection of dense subsets of rational numbers indexed by
the set of all integers. For each integer n, let Pn =
{(x,n) |x € En}. Let w denote an ideal point. Let

* p ). a neighborhood system for the points

x={wul 7 »p

of X is as follows:
(a) If n is even, then put a maximal perfect topology
o, on Pn exactly as described above.
(b) Let n # 1 be an odd integer and let p = (x,n) € P .

Then, for each positive integer m, let
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U, (p) = {(y,n+l) € Pn+l|IX-YI < 1l/m} y
{(y,n-1) € Pn_lllx-yl < 1/m} y {p}.
(c) Let n =1 and p = (x,n) € Pn' If x € (vn/2,m), then,

for each positive integer m, define Um(p) as in
(b). If m/2 < x < 7w, then, for each positive
integer m, let Um(p) = {(y,n-1) € P |x-y] <
1/m} u {p}.

(d) If p = w, then, for each positive integer m, let
u,(p) = {p} U {(x,n)|[n| > 2m} be a neighborhood of
p.

The fact that this space is not strongly connected is

easily shown using 10.7(d).

Definition 10.5. Let a and b be points of a set S and
let Hl,Hz,“-,Hn be a finite collection of subsets of S.

{Hl,H ---,Hn} is a simple chain from a to b if

2!

(i) a € H, - H b € Hn - H

1 2! n-1’
and (ii) H; n Hy + ¢ if and only if |i-j| < 1,

i=1,e++,n, j = 1,%¢+,n.

Theorem 10.17 [52]. (q) A séace S is connected <if and
only i1f given any two points a and b of S and any open cover-
ing {Ga|d € A} of S, there exists a finite subcollection of
{Ga|a € A} whieh is a simple chain from a to b.

(b) Let (X,T) be a topological space where X has at

least two elements and is principal. Let I be the

set of aiZ isolated points of,(X'T) and J = X - I.
‘If X € J, let Vx be the intersection of all open

neighborhoods of x. Then a necessary and sufficient

condition for (X,T) to be maximal connected is that
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all of the following three statements are true:

(1) UXEJVx = X,

(i2) If x % x', x and x' € J then vV, N V' has at
most one point,

(i21) If a, b € (X,T), then there exists exactly one

simple chain of open sets Vx from a to b.

Example 10.4 [52]. Since topologies on finite sets are
principal, J. P. Thomas used the preceding result to deter-
mine a graphical method for representing maximal connected
topologies on finite séts. The members of I are represented
by solid dots and the members of J by open dots. Vx is re-
presented by a line segment on which are x and the isolated
points in Vx' Below are graphical representations for maxi-
mal connected topologies with less than 6 elements.

1 element °

2 elements o-e
3 elements o-e-e o—/D

4 elements o—e—e—-o O—O—f o-—<

Definition 10.6. A topological space (X,t) is a door
space if every subset is either open or closed. A topologi-
cal space (X,T) is a semi-door space if for A c X there is

B € v such that 'either B € A < clTB or BSESX~-Ac¢g clTB.

We used the method of Example 10.4 to give the follow-

ing examples.

Example 10.5 [52]. (a) Quotients of maximal connected
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connected spaces are not necessarily maximal connected.
d

For X = {a,b,c,d} and 1t given by 31—11—5: the quotient

determined by R = {{a,b}, {c,d}} is not maximal.

(b) Products of maximal connected spaces are not neces-
sarily maximal. For X = {a,b} and 1 given by g—-g,
(XxX,TxT) is not maximal connected.

(c) Every maximal connected space is not door or semi-
door.

The space of (a) is not door and for X = {a,b,c,d,e,f,g},

the topology given by

d e g
a £
c
is not semi-door.
Theorem 10.18 [52]. (a) Every maximal connected

topology tis T,
(b) Every connected topology on a finite set is
strongly connected.
(e) In order that (X,t) be maximal connected it is
necessary that whenever A € X and A is connected

and X - A is connected, then A€ T or X - A € T.

Theorem 10.19 [18]. The number of homeomorphism classes
of maximal connected n-point topologies is equal to twice the
number of n-point trees minus the number of n-point trees

having a symmetry line.
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11. Pseudocompact
Theorem 11.1, (a) [43]) (X,1) <is pseudocompact if and

only if (X,TS) 18 pseudocompact (Ts has as a base the T-regu-
lar open sets).

(b) [43] Every maximal pseudcompact space is submaximal.

(e¢) [10] 4 pseudocompact space (X,1) is maximal if and
only if for G € 1 either G or X - G has a T(G)
C-embeddable copy of the natural numbers N.

(d) [10] A pseudocompact space (X,T) is maximal pseudo-
compact only if for G ¢ 1T either G or X - G is not
pseudocompact.

(e) [15] A maximal pseudocompact space is a T,-space.

(f) [10] A countably compact space (X,T) is maximal
pseudocompact if and only if for G ¢ T, X - G con-
tains a T(G) C-embeddable copy of N.

(g) [16] 4 Tl completely regular submaximal space is
maximal pseudocompact i1f and only i1f it is maximal
lightly compact.

(h) [23) Let (X,T1) be pseudocompact, completely regular,

first countable and be 0 be an ultrafilter of T-dense

sets. Then 1(J) is maximal pseudocompact.

Example 11.1. (a) This is Hing Tong's example [48] of
a maximal compact space which is not Hausdorff and is also
maximal pseudocompact.

Let X = {a,b} U NXN where N is the set of natural
numbers. The topology T on X has a base of all sets of the
following forms:

{(m,n)} for (m,n) € NXxN;
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{a} U{(m,n): m =2k, k € N, and n € N - Am};

{b} U {(mn): me€ N - (A UB)} U{(mn): m € B and

neé€ N - Bm}
where A and B are arbitrarily chosen finite subsets of the
even and odd positive integers respectively, and AL and Bm
are arbitrarily chosen finite subsets of N and vary with each
permissible m.

(b) A pseudocompact T_. space which is not strongly

D
pseudocompact.

Let X be infinite, X € X. The topology T on X consists
of all sets A c X such that X, € A.

(c) A maximal countably compact space which is not maxi-
mal pseudocompact.

Let X = [0,1] and let 1 be the usual topology.

(d) This example is an example of P. Urysohn [56] and
is an example of a maximal pseudocompact space which is not
maximal countably compact.

Let X = {a,b} U NXI where I is the set of integers. The
neighborhood bases for T consist of the following sets:

{(m,n)} for m € N, n € T - {0};

U.((m,0)) = {(m,0)} u {(myn): |n| > r} for r € N;

Ur(a) {a} U {(m,n): m> r, n> 0} for r € N;

U, (b) {b} U {(myn): m> r, n < 0} for r € N.

12. Lightly Compact (Feebly Compact)
Definition 12.1. A space (X,T) is lightly compact
(feebly compact) if every locally finite family of non-

void open sets is necessarily finite.

Theorem 12.1 [49]. On a space (X,T), the following
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are equivalent:

(a) (X,T) is lightly compact

(b) If U is a countable open cover of X, then there
exists a finite subcollection of [l whose closures
cover X;

(¢) Every countable open filter base on X has an ad-
herent point. Lightly compact is semiregular, con-
tractive regular closed hereditary, contagious and

preserved by finite untions.

Theorem 12.2 [43]. Every maximal lightly compact space

18 submaximal.

Example 12.1 [43]. A light compact space which is sub-
maximal but not maximal.

Let X be infinite x_ € X and t = {¢} v {V ¢ X|x_ € V}.

Example 11.1 (b) is a lightly compact space which is

not strongly lightly compact.

Theorem 12.3 [l6]. A Tl completely regular submaximal
space 1s maximal lightly compact i1f and only if it <is maxi-

mal pseudocompact.

13. QHC and H-Closed
Definition 13.1l. A topological space (X,1) 1is QHC

(quasi-H-closed) if every open filter base has a cluster
point or equivalently if every open cover has a finite sub-
family whose closures cover X. 1In a Hausdorff space, QHC
is called H-closed and is equivalent to being closed in any

Hausdorff space in which it may be embedded.
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QHC is semiregular, contractive, regular closed heredi-
tary, contagious and preserved by finite unions.

Every H-closed space is strongly H-closed, but Example
11.1 (b) is a QHC space which is not strongly QHC. Example
11.1 (a) is a maximal QHC space which is not Hausdorff and

Example 11.1 (d) is a maximal H-closed space.

Definition 13.2., A subset B of a topological space
(X,1) is interiorly QHC if every open cover of B has a finite

subfamily whose closures cover int A.

Theorem 13.1 [13]. A QHC-space is mazimal QHC <if and
only if it <is submaximal and <if, for any A < X, A is interi-

orly QHC and X-int A ig QHC, then A is closed.

14. K-Dense Spaces

Definition 14.1. For an infinite cardinal k a topologi-
cal space (X,1) is kK-dense if it has a dense subset of car-

dinality <k (Ho-dense is separable).

Definition 14.2. A k-dense space (X,T) is A-maximal
K -dense if for t' > 1, (X,t') is not k-dense if

At' = AT.

k-dense is open hereditary, open expandable, contagious

and contractive.

Theorem 14.1 [l4]. (a) If (X,T) i8 k-dense with
At > Kk then (X,T) is A-strongly K-dense. Furthermore if D is
a K-dense set then there is a finer A-maximal k-dense
topology TB such that ATB = A1, D is dense in TB and if C is
a K-dense set, then C N D # ¢.
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(b) The reals are B-strongly separable.

() If (X,7) ie A-mazimal K-dense with AT > k, and B is
k-dense such that A(T|B) =k, thenm (B, T|B) is A-maxi-
mal x-dense.

(d) The rationals are A-strongly separable.

(e) If (X,T) is K-dense with AT >k and D is a dense
subset, |D| <k, A(T|D) =« then (X,1) is A-strongly
Ty K -dense.

(f) If (X,1) Zs A-maximal k-dense with At > k, then (X,7T)
18 resolvable.

(g) If (X,7) is A-maxzimal k-dense, D demse, |p| < k and

A(t|p) =k, then (X,T) is K -maximal.

15. Countable Chain Condition
Definition 15.1. A topological space (X,t) has the

countable chain condition (CCC) if every collection of dis-

joint open sets is countable.

CCC is contagious, open hereditary, contractive and

open expandable.

Definition 15.2. A topological space (X,T1) with CCC is

A-maximal CCC if for t' o 1, ATt' = A1, then (X,1') is not CCC.

Theorem 15.1 [14]. (a) Every dense subset of a CCC
space 1s CCC.
(b) A CCC space (X,T) is A-maximal CCC Zf and only if it
is AT-maximal.

(e) Every CCC space is A-strongly CCC.
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16. Heriditary Properties

Definition 16.1. For a topological property R, a space
(X,1) is A-maximal hereditary R if for any 1' = 1, either

(X,7') is not hereditary R or AT' < Art.

Theorem 16.1 [17]. If R is open (closed) expandable,
then (X,1) is A-maximal hereditary R 1f and only if T is

At-maximal.

Theorem 16.2 [17]. A T -space (X,T) Zs strongly heredi-
tary
(1) k-dense if and only if |X| < k.

(2) la,bl-compact if and only if |X| < a.

Theorem 16.3 [l4]. A second countable space (X,1) is

strongly second countable only if |X| < B -

17. Non Ti- Spaces
Although it is generally accepted policy to study maxi-

mal topologies for some property R, J. P. Thomas [51] chose
to study topological spaces which do not have property R but
for which any stronger topology has property R. The follow-

ing results are his.

Theorem 17.1. (a) A topological space (X,T) is maximal
non-Kolmogorofyf (non—TO) 1f and only <if for some a, b € X,
T has as a base {{a,b}} y {{x}|x € X, x + a,b}.
(b) A topological space (X,T) is maximal non-accessible
(non—Tl) i1f and only 1f T has as its base for some
a, b € x, {{a,b}} u {{x}|x € x - {al}}.

(¢) Any non-Kolmogoroff (non-accessible) space is
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strongly non-Kolmogoroff (mnon-accessible).

(d) If (X,7t) is non-separated (non-Hausdorff) then there
exists a maximal non-separated and maximal non-
regular topology T' stronger than T.

(e) If (X,1) is separated and non-regular then there is
a strictly finer topology 1' for which (X,1') <is
separated and non-regular and thus there do not exist
Hausdorff maximal non-regular spaces and the maximal
non-Hausdorff spaces are the same as the maximal
non-regular spaces.

(f) The product of two non-trivial topological spaces is
not maximal non-Kolmogorff, maximal non-accessible,

nor maximal non-separated.

18. Door Spaces

In this section all spaces considered are Hausdorff

spaces of infinite cardinality.

Definition 18.1. A door space is a space in which every

subset is either open or closed.

Definition 18.2. A nondiscrete door space is maximal

door if the only finer door topology for the set is discrete.

Theorem 18.1 [31l). A Hausdorff space (X,T) is a non-
digerete door space if and only if X = S U {pl where S is
an infinite discrete set and p is a point such that the

restriction of its neighborhoods to S forms a filter on S.

Definition 18.3. For an infinite cardinal m, a subset

S of Bm (m discrete) is strongly discrete if for each s € S
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there is a neighborhood Us < Bm of s such that if s # t, then

u_nu

s £ Nm=4g.

Theorem 18.2. For an infinite door space (X,T), the
following are equivalent:
(a) (X,T) is8 maximal door;
(b) [31] X = S U {pl where S is an infinite discrete
get and p 18 a point such that the restrictions of
its neighborhoods to S forms an ultrafilter in S;
(e) [21] (X,t) can be embedded in some Bm in such a

way that S is strongly discrete.

Theorem 18.3 [21]. Every countable nondiscrete door

space which can be embedded in Bm is a maximal door space.

Theorem 18.4 [31l]. For every maximal door space (X,T)
there 18 a discrete space m such that X can be embedded in

Bm; furthermore m may be taken as |X|.

Theorem 18.5 [21]. For every infinite cardinal m, there
exists a nondiscrete door space X with |X| > m such that X
can be embedded in Bm but X is not maximal door. In particu-
lar, there is a nondiscrete door space of cardinality 280

which is not maximal door, but can be emhedded in BRO.

19. Functionally Maximal

All spaces to be considered in this section are Ty

Definition 19.1. For a class of topological spaces I
we define an expansion ¢ of T to be functionally invariant
with respeet to I (IZ-invariant) if for each space Y € I the

o-continuous functions into Y are all t-continuous.
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A topology T is called I-maximal or functionally maximal
with respect to I if no proper expansion of T is I invariant.

If I is a singleton {Y}, we write Y-invariant instead
of {Y}-invariant.

A space is I-regular if X can be embedded in a product
of spaces from I. The class of I-regular spaces is denoted

£,

Theorem 19.1 [23]. Let I be a class of spaces and let
(X,0) be an expansion of (X,T1). Then o 18 I-invariant if

and only <if o is s¥-invariant.

Corollary 19.1 [23]. (a) Let Y be a space and I be the
class of all spaces having the topology induced by the con-
tinuous functions into Y. Then an expansion is L-invariant
if and only if it is Y-invariant.

(b) An expansion is Tychonoff-invariant if and only if

it is R-invariant.

(e) An expansion is functionally invariant with respect
to the class of all zero-dimensional Hausdorff
spaces if and only i1f it is fumnetionally invariant
with respect to the discrete doubleton.

(d) An expansion 0 of T is functionally <invariant with
respect to all topological spaces <if and only if it
18 funetionally invariant with respect to the

Sierpinski doubleton (if and only <f o = 1T).

Definition 19.2, A space (X,t1) is perfectly Hausdorff

if every point is a zero set.

Theorem 19.2 [23]. Let (X,T) be a perfectly Hausdorff
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space and let 0 be a pseudocompact expansion of T. Then o

is an R-invariant expansion of T.

Theorem 19.3 [23]. Let (X,T) be a first countable
Tychonoff space and suppose G is an R-invariant expansion
of 1. Then T < ¢ (1 < 0 means that v < ¢ and cl v=clvVv

for every V € 1).

Theorem 19.4 [23]. There exist connected expansions

of the usual topology on R which are not R-invariant.

Definition 19.3. If o is an expansion of 1, x € X is
an improper point of the expansion if ¢ and 1 determine the
same neighborhood system at x (neighborhoods need not be
open). If the set of improper points is t-dense, the ex-

pansion is said to be improper on a dense set.

Corollary 19.2 [23]. If o > t is improper on a dense

set, then o is an R-invariant expansion.

Definition 19.4. S is locally dense relative to T if

S =V nNDwhere V € T and D is 1-dense.

Definition 19.5. (X,T) 1is essentially connected if

every connected expansion has the same connected subsets.

Theorem 19.5 [23]. Let (X,T) be essentially connected
and locally connected, and let [ be a pairwise disjoint
family of locally dense sets. Let o be the expansion whose
subbase is T U 0. The following are equivalent:

(a) o 1is R-inmvariant,

(b) o is connected,
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(e) o is improper on a dense set.

Theorem 19.6 [23]. A regular-maximal space is sub-
maximal .
Theorem 19.7 [23]. Let (X,1) be completely regular,

first countable space and [ be an ultrafilter of t-dense

sets. Then T()) is R-maximal.

20. Maximum and Minimum Spaces

Closely allied with the concept of maximal and minimal
spaces is that of maximum and minimum spaces. The best known
example is the minimum Tl—topology which is the topology of
finite complements. R. E. Larson [34] has characterized the
maximum and minimum topological spaces and the results given

here are his.

Definition 20.1. A topological (X,t) is completely
homogeneous if every one-to-one mapping of X onto itself is

a homeomorphism.

Theorem 20.1. (a) Any subspace of a completely homo-
geneous space is completely homogeneous.

(b) If (X,t) is non-discrete and completely homogeneous,
then (X,1) <8 connected and not Hausdorff.

(¢c) The set of completely homogeneous topologies on a
set X form a linearly ordered sublattice of the
lattice of all topologies on X.

(d) The only completely homogeneous topologies on X are
(1) the indiscrete topology

(i1) the discrete topology
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(i12) topologies of the form
T = {G c X||X-G| <m}u {$} where B, <m< |x].
(e) If X 28 a set of cardinality m and n ig the cardi-
nality of the set of all infinite cardinals less
than or equal to m, then the number of minimum

topologies on X Z8 n + 2,

Theorem 20.2. Given a topological space (X,T), the fol-
lowing are equivalent:

(a) (X,t) 8 completely homogeneous.

(b) (X,t) is minimum P for some topological property P.

(e) (X,T) is maximum Q for some topological property Q.

21. Complementary Properties

A recent object of interest in both minimal and maximal
topological spaces is that of complementary properties intro-

duced by R. E. Larson [35] in 1973.

Definition 21.1, A topological property P is expansive
(contractive) if for any topology T with property P any finer

(coarser) topology T' also has property P.

Definition 21.2. If P is an expansive topological
property and Q is a contractive topological property then P
and Q are called complementary if a topology is minimal P

if and only if it is maximal Q.

Definition 21.3. A topological space is loosely nested
if it is nested and the closed derived sets of points are

point closures.

Theorem 21.1 [35]1. (a) To and loosely nested are
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complementary.
(b) Ty and nested are complementary.

(e) T, and the property that all proper closed sets are

finite are complementary.

Definition 21.4. A principal topological space is
principal of order n if it possesses at most n distinct

minimal open sets.

Theorem 21.2 [35]. Disconnected and principal of order

two are complementary topological properties.

Definition 21.5. A topological space is filter-con-
nected if either the nonempty open sets or nonempty closed

sets form a filter base.

Theorem 21.3 [35]. Door and filter-comnnected are com-

plementary.

Definition 21.6. A topological space is H-compact if
the following conditions hold:

H(i) Every open filter has a cluster point.

H(ii) Every open filter with a unique cluster point

converges.

R. E. Larson [35] conjectured that Hausdorff and
H-compact are complementary but it has been shown recently
[12] that Hing Tong's example [Example 1ll.1l(a)] is maximal

H-compact, maximal H(i) and maximal H(ii) and not Hausdorff.

22. Some Unsolved Problems

In this final section we listed some unsolved questions
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which have arisen during investigation of the topics dis-

cussed in this paper. They are listed by section number for

easier reference.

4-1. What are necessary and sufficient conditions for a
space to be strongly R?

5-1. Are all compact spaces strongly compact?

6-1. Under what conditions is BX maximal countably compact?

6-2. Are all countably compact spaces strongly countably
compact?

8-1. Are all sequentially compact spaces strongly sequen-
tially compact?

8-2. Are there maximal countably compact spaces which are
not sequentially compact?

11-1. Without reference to any expansions what are necessary
and sufficient conditions for a space to be maximal
pseudocompact?

19-1. What are complementary properties for each property
discussed in this paper?
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