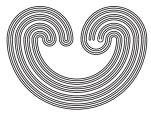
TOPOLOGY PROCEEDINGS

Volume 2, 1977 Pages 169–178



http://topology.auburn.edu/tp/

AN ALGEBRAIC CHARACTERIZATION OF THE FREUDENTHAL COMPACTIFICATION FOR A CLASS OF RIMCOMPACT SPACES

by

Melvin Henriksen

Topology Proceedings

Web:	http://topology.auburn.edu/tp/
Mail:	Topology Proceedings
	Department of Mathematics & Statistics
	Auburn University, Alabama 36849, USA
E-mail:	topolog@auburn.edu
TCCNI.	0146 4194

ISSN: 0146-4124

COPYRIGHT © by Topology Proceedings. All rights reserved.

AN ALGEBRAIC CHARACTERIZATION OF THE FREUDENTHAL COMPACTIFICATION FOR A CLASS OF RIMCOMPACT SPACES

Melvin Henriksen

1. Introduction

Throughout C(X) will denote the ring of all continuous real-valued functions on a Tychonoff space X, and C*(X) will denote the subring of bounded elements of C(X). The real line is denoted by R, and N denotes the (discrete) subspace of positive integers. A subset S of X such that the map $f \rightarrow f|_{S}$ is an epimorphism of C(X) (resp. C*(X)) is said to be C-embedded (resp. C*-embedded) in X. As is well-known, every $f \in C*(X)$ has a unique continuous extension βf over its Stone-Cech compactification βX [GJ, Chapter 6]. That is, X is C*-embedded in βX .

In [NR], L. Nel and D. Riordan introduced the subset $C^{\#}(X)$ of C(X) consisting of all f such that for every maximal ideal M of C(X), there is an $r \in R$ such that $(f-r) \in M$, and they noted that $C^{\#}(X)$ is a subalgebra and sublattice of C(X) containing the constant functions. They show how $C^{\#}(X)$ determines a compactification of X in a number of cases and leave the impression that it always does. In [C1], E. Choo notes that this is true if X is locally compact and seems to conjecture that it need not be the case otherwise. In [SZ 1], 0. Stefani and A. Zanardo show that every $f \in C^{\#}(R^{\omega})$ is a constant function, where R^{ω} denotes a countably infinite product of copies of R. In [SZ 2] they show that $C^{\#}(X)$

determines a compactification of X in case X is locally compact, pseudo compact, or zero-dimensional, and they describe the compactifications so determined when X is realcompact [GJ, Chapter 8].

In this paper, I show that under certain restrictions on X. the ring $C^{\#}(X)$ determines the Freudenthal compactification of X [I1, pp. 109-120], I observe that, at least in disguised form. $C^{\#}(X)$ has been considered by a number of authors other than those named above, and some conditions are given that are either necessary or sufficient for X to determine a compactification of X. In particular, it is shown that if X is realcompact, and $C^{\#}(X)$ determines a compactification of X, then X is rimcompact and it determines the Freudenthal compactification ΦX of X. There are realcompact rimcompact spaces X for which $C^{\#}(X)$ does not determine a compactification of X, but $C^{\#}(X)$ does determine ΦX if every point of x has either a compact neighborhood, or a base of open and closed neighborhoods. Other sufficient conditions are given for $C^{\#}(X)$ to determine ΦX . I close with some remarks and open problems.

2. Using $C^{\#}(X)$ to Compactify X

We will make use of the following characterization of $C^{\#}(X)$ due to a number of authors. Recall that $Z(f) = \{x \in X: f(x) = 0\}$ and $\cup X$ denotes the Hewitt real compactification of X.

2.1 Theorem. If $f \in C(X)$, then the following are equivalent.

(a) $f \in C^{\#}(X)$.

- (b) $f \in C^{*}(X)$ and f[D] is closed (and hence finite) for every C-embedded copy D of N.
- (c) $f \in C^{*}(X)$ and f[Z] is closed for every zero-set Z in X.
- (d) $f \in C^*(X)$ and for every $r \in R$, $Cl_{ov}Z(f-r) = Z(\beta f-r)$.

(e) $f \in C^*(X)$ and for every $p \in \beta X \setminus UX$, there is a neighborhood of p in βX on which βf is constant.

The equivalance of (a) and (b) seems to appear first in [NR]. The equivalence of (a), (b), (c), (d) appears in [Cl], and that of (a), (b), (d), and (e) in [SZ 2]. Mappings that satisfy (d) are a special case of what are called WZmaps by T. Isiwata, who showed that any map that sends zerosets to closed sets in a WZ-map, and that a WZ-map on a normal space is closed [I 2], [W, p. 215]. More important for this paper is the following result. For any subset S of X, let Fr S = Cl S \cap Cl(X\S) denote the *boundary* (or *frontier*) of S.

2.2 Theorem. If X is realcompact and $f\in C^{\#}(X)$, then $Fr\ Z(f-r)$ is compact for every $r\in R,$ and f is a closed mapping.

By Theorem 2.1 (d,e) if $r \in R$, then either Z(f-r) is compact or Fr $Z(\beta f-r) \subset X$. In the latter case, Fr Z(f-r) =Fr $Z(\beta f-r)$. In either case Fr Z(f-r) is compact. In [I.2, 1.3], T. Isiwata shows that a WZ-map with this latter property is closed, so the theorem is proved.

Recall that a space X is called *rimcompact* if it has a base of open sets with compact boundaries. X is said to be *zero-dimensional* at x if x has a base of neighborhoods with

empty boundaries, and X is called *zero-dimensional* if it is zero-dimensional at each of its points. It is shown in [M3] that every rimcompact space has a compactification ΦX such that $\Phi X \setminus X$ is zero-dimensional, and wherever γX is a compactification of X with $\gamma X \setminus X$ zero-dimensional, there is a continuous map of ΦX onto γX leaving X pointwise fixed. ΦX is called the Freudenthal compactification of X.

In [D], R. Dickman shows that if X is rimcompact, then every $f \in C^{*}(X)$ such that Fr Z(f-r) is compact for every r \in R has a (unique) extension in C(ϕ X). Hence the following is an immediate consequence of Theorem 2.2.

2.3 Corollary. If X is rimcompact and realcompact, then every $f\in C^{\#}(X)$ has a (unique) extension $\varphi f\in C(\varphi X)$.

Suppose S is a subring of C*(X) that contains the constant functions and γX is a compactification of X such that every $f \in S$ has an extension $\gamma f \in C(\gamma X)$ and $S^{\gamma} = \{\gamma f: f \in S\}$ separates the points of γX . (That is if $x_1, x_2 \in \gamma X$ and $x_1 \neq x_2$, there is an $f \in S$ such that $\gamma f(x_1) = 0$ and $\gamma f(x_2) = 1$). Then by the Stone-Weierstrass Theorem, S^{γ} is dense in $C(\gamma X)$ in its uniform topology [GJ, 16.4], and we say that S determines the compactification γX of X. Note that S determines a compactification of X if points can be separated from disjoint closed sets by functions in S.

If $\gamma_1 X$ and $\gamma_2 X$ are compactifications of X for which there is a homeomorphism of $\gamma_1 X$ onto $\gamma_2 X$ keeping X pointwise fixed, then we write $\gamma_1 X = \gamma_2 X$.

For any space X, let $C_{\#}(\beta X) = \{\beta f: f \in C^{\#}(X)\}$ and note that $C_{\#}(\beta X)$ and $C^{\#}(X)$ are isomorphic. Similarly, if X is

realcompact and rimcompact, then by Corollary 2.3, $C^{\#}(X)$ is isomorphic to $C_{\mu}(\Phi X) = \{\Phi f: f \in C^{\#}(X)\}.$

A subring A of C*(X) is called *algebraic* if it contains the constant functions and those members $f \in C^*(X)$ such that $f^2 \in A$. If, in addition, A is closed under uniform convergence, then A is called an *analytic* subring of C*(X). The closure in the uniform topology of a subset B of C*(X) will be denoted by uB. It is noted in [GJ, 16.29], that if A is an algebraic subring of C*(X), then uA is an analytic subring.

If $B \subset C^*(X)$, then a maximal stationary set S of B is a subset of X maximal with respect to the property that every f \in B is constant on S. In [GJ, 16.29-16.32], the following is established.

2.4 If X is compact and A is an algebraic subring of $C^{*}(X)$, then every maximal stationary set of A is connected and $uA = \{f \in A: f \text{ is constant on every connected stationary set of A}\}$.

If X is rimcompact and realcompact, then, by the above $C_{\#}(\Phi X)$ is an algebraic subring of $C^{*}(\Phi X)$. Next, I make use of the above to establish:

2.5 Theorem. If X is a realcompact space and $C^{\#}(X)$ determines a compactification γX of X, then X is rimcompact and $\gamma X = \Phi X$.

Proof. Suppose $x \in X$ and V is an open neighborhood of x. By assumption there is an $f \in C^{\#}(X)$ such that f(x) = 0 and $f(X \setminus V) = 1$. If $g = (f - \frac{1}{2}) \vee 0$, then, by Theorem 2.2 Z(g) is a neighborhood of x with compact boundary that is

contained in V. Hence X is rimcompact, and so $A = C_{\#}(\Phi X)$ is an algebraic subring of $C^{*}(\Phi X)$. Assume without loss of generality that X is not compact, let S denote a maximal stationary set of A, and suppose S has more than one point. Since A determines a compactification of X, it follows that $S \subset \Phi X \setminus X$. Since the remainder of X in ΦX is totally disconnected, S reduces to a point and Theorem 2.5 is established.

Next, I give an example to show that $C^{\#}(X)$ need not determine a compactification of a realcompact and rimcompact space. For any space X, let R(X) denote the set of points of X which fail to have a compact neighborhood. Clearly R(X) is closed since X\R(X) is open.

2.6 Example. A real compact rimcompact space S for which R(X) is a compact connected maximal stationary set.

Let W* denote the space of ordinals that do not exceed the first uncountable ordinal ω_1 , and let W = W* \{ ω_1 }. It is well known that W* is compact and every $f \in C(W)$ is eventually constant [GJ, 5.13]. Let X = [0,1] × W* with the topology obtained by adding to the product topology every subset of [0,1] × W. Clearly X is rimcompact and R(X) = [0,1] × { ω_1 }. Moreover, X is the union of a realcompact discrete space and the compact space R(X), so X is realcompact [GJ, 8.16]. Suppose o $\leq r < s \leq 1$ and $g \in C^*(X)$ is such that $g(r, \omega) \neq g(s, \omega)$. Since [0,1] is connected, since every $f \in C(W)$ is eventually constant, and since W has no countable cofinal subset, there is an $\alpha > \omega_1$, and an increasing sequence { x_n } of real numbers between r and s such that $g(x_n, \alpha) \neq g(x_m, \alpha)$ if $n \neq m$. Thus g assumes infinitely many

values on a closed discrete subspace of X and hence cannot be in $C^{\#}(X)$ by Theorem 2.1(b). So R(X) is a maximal stationary set of $C^{\#}(X)$.

It is clear that $C^{\#}(X)$ always contains both the subring $C_{K}(X)$ of all functions with compact support and the subring $C_{F}(X)$ of functions with finite range. Clearly any point of X\R(X) can be separated from any disjoint closed set by some element of $C_{K}(X)$, and if X is zero-dimensional at a point x, then x can be separated from any disjoint closed set by some element of $C_{F}(X)$. This together with 2.4 and Theorem 2.5 proves:

2.7 Theorem. If X is a rimcompact, realcompact space that is zero-dimensional at each point of R(X), then $C^{\#}(X)$ determines ΦX ; that is, $u C_{\#}(\Phi X) = C(\Phi X)$.

Along these lines we have also:

2.8 Theorem. If X is a rimcompact and realcompact space such that $cl_{\Phi X}(\Phi X \setminus X)$ is zero-dimensional, then $u \ C_{\mu}(\Phi X) = C(\Phi X)$.

Proof. By the remarks proceeding the proof of Theorem 2.7, if S is a maximal stationary set for $C_{\#}(\Phi X)$ with more than one point, then $S \subset cl_{\Phi X}(\Phi X \setminus X)$. Since the latter set is zero-dimensional, S reduces to a point and the conclusion follows.

In [I1, Theorem 36, p. 114], it is shown that if $\Phi X X$ is a Lindelöf space, then the Lebesgue dimension of $\Phi X X$ is zero. In [P, Corollary 5.8] it is shown that if F is a closed subset of a normal space Y, then the Lebesgue dimension of Y does not exceed the Lebesgue dimensions of A or (Y\A). It follows that if R(X) is compact and zero-dimensional, then $c\ell_{\Phi X}(\Phi X \setminus X) = (\Phi X \setminus X) \cup R(X)$ is zero-dimensional, for these two motions of dimensionality coincide at 0 if X is compact; see [P, pp. 156-157]. Note also that $\Phi X \setminus X$ is a Lindelöf space if and only if every compact subset of X is contained in a compact subset with a countable base of neighborhoods; in which case we will say that X is of *countable type*. [I1, p. 119]. Thus we have established:

2.8 Corollary. If X is a rimcompact, realcompact space of countable type, and R(X) is compact and zero-dimensional, then $u C_{+}(\Phi X) = C(\Phi X)$.

3. Remarks and Open Problems

- A. In [N], the ring of all closed $f \in C(X)$ is considered for X locally compact and weakly paracompact (= metacompact). For X realcompact this latter ring coincides with $C^{\#}(X)$ by Theorem 2.2. Recall also that W. Moran showed in [M3] that if every closed discrete subspace of a normal metacompact space X is realcompact, then so is X. Also, examination of Example 3 of [N] shows that this latter need not hold if X fails to be normal.
- B. In a private communication S. Willard notes that if $f \in C^*(X)$ and f is a closed mapping, then Z(f) has a countable base of neighborhoods in X. (I.e., Z(f) = $\int_{i=1}^{\infty} f^{-1}(-1/i, 1/i)$). It would be of great interest to characterize the zero-sets of elements of $C^{\#}(X)$ at least in case X is rimcompact and realcompact. To determine which such spaces determine X, it would probably be

- C. Willard notes also that if S is a countable subset of X and $c\ell_{\phi X}S$ is connected, then S is a stationary set for $C^{\#}(X)$. It follows from a theorem of McCartney [M], Proposition 3.12] that if $Y = [0,1] \times (0,1] \cup Z$, where $Z = \{(q,0): 0 \leq q \leq 1 \text{ and } q \text{ is rational}\}$, then $\phi Y =$ $[0,1] \times [0,1]$. Hence, by the latter remark of Willard cited above, Z is a stationary set for $C^{\#}(Y)$, so Y is a separable, metrizable rimcompact space such that $C^{\#}(Y)$ does not determine a compactification of Y.
- D. Suppose X = $[0,1] \times Q \cap [0,1]$, where the open sets of X and those in the product topology together with any subset of $\{(a,b) \in X: b > 0\}$. Then $R(X) = \{(a,b) \in X: b = 0\}$ is compact and connected, X is rimcompact, realcompact, and determines ΦX . So the hypotheses of Theorem 2.7 or 2.8 are not necessary for X to determine ΦX .

References

- [C1] E. Choo, Note on a subring of C*(X), Canadian Math. Bull. 18 (1975), 177-179.
- [C2] , A note on the subring of closed functions in C*(X), Nanta Math. 7 (1974), 11-12.
- R. Dickman, Some characterization of the Freudenthal compactification of a semicompact space, Proc. Amer. Math Soc. 19 (1968), 631-633.
- [GJ] L. Gillman and M. Jerison, Rings of Continuous Functions, D. Van Nostrand, New York, 1960.
- [I1] J. Isbell, Uniform Spaces, Math. Surveys No. 12, Amer. Math Soc., Providence, RI, 1964.
- [12] T. Isiwata, Mappings and spaces, Pacific J. Math 29 (1967), 455-480.

- [M1] J. McCartney, Maximum zero-dimensional compactifications, Proc. Camb. Philos. Soc. 68 (1970), 653-661.
- [M2] W. Moran, Measures on metacompact spaces, Proc. London Math Soc. (3) 20 (1970), 507-524.
- [M3] K. Morita, On biocompactifications of semibicompact spaces, Science Reports Tokoyo Bunrika Diagaku Section A, Vol. 4, 94 (1952), 200-207.
- [N] K. Nowinski, Closed mappings and the Freudenthal compactification, Fund. Math 76 (1972), 71-83.
- [NR] L. Nel and D. Riordan, Note on a subalgebra of C(X), Canadian Math. Bull. 15 (1972), 607-608.
- [P] A. Pears, Dimension Theory of General Spaces, Cambridge University Press, 1975.
- [SZ1] O. Stefani and A. Zanardo, Un'osservazione su una sottoalgebra di C(X), Rend. Sem. Mat. Univ. Padova 53 (1975), 327-328.
- [SZ2] , Alcune caratterizzazioni di una sottoalgebra di C*(X) e compattificazioni ad essa associate, ibid. 53 (1975), 363-367.
- [W] M. Weir, Hewitt-Nachbin Spaces, North Holland Math Studies, Amsterdam, 1975.

Harvey Mudd College

Claremont, California 91711