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AN ALGEBRAIC CHARACTERIZATION OF THE 

FREUDENTHAL COMPACTIFICATION FOR A 

CLASS OF RIMCOMPACT SPACES 

Melvin Henriksen 

1. Introduction 

Throughout C(X) will denote the ring of all continuous 

real-valued functions on a Tychonoff space X, and C*(X) will 

denote the subring of bounded elements of C(X). The real 

line is denoted by R, and N denotes the (discrete) subspace 

of positive integers. A subset S of X such that the map 

f ~ fl is an epimorphism of C(X) (resp. C*(X» is said to s 

be C-embedded (resp. C*-embedded) in X. As is well-known, 

every f E C*(X) has a unique continuous extension 8f over 

its Stone-Cech compactification aX [GJ, Chapter 6]. That 

is, X is C*-embedded in SX. 

In [NR] , L. Nel and D. Riordan introduced the subset 

C#(X) of C(X) consisting of all f such that for every maximal 

ideal M of C(X), there is an r E R such that (f-r) E M, and 

they noted that C#(X) is a subalgebra and sublattice of C(X) 

containing the constant functions. They show how C#(X) 

determines a compactification of X in a number of cases and 

leave the impression that it always does. In [Cl], E. Choo 

notes that this is true if X is locally compact and seems to 

conjecture that it need not be the case otherwise. In [SZ 1], 

o. Stefani and A. Zanardo show that every f E C#(Rw) is a 

constant function, where denotes a countably infiniteRW 

product of copies of R. In [SZ 2] they show that C#(X) 
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determines a compactification of X in case X is locally 

compact, pseudo compact, or zero-dimensional, and they 

describe the compactifications so determined when X is real-

compact [GJ, Chapter 8]. 

In this paper, I show that under certain restrictions 

on X, the ring C#(X) determines the Freudenthal compactifica

tion of X [11, pp. 109-120], I observe that, at least in 

disguised form, C#(X) has been considered by a number of 

authors other than those named above, and some conditions are 

given that are either necessary or sufficient for X to deter

mine a compactification of X. In particular, it is shown that 

if X is realcompact, and C#(X) determines a compactification 

of X, then X is rimcompact and it determines the Freudenthal 

compactification ~X of X. There are realcompact rimcompact 

spaces X for which C#(X) does not determine a compactification 

of X, but C#(X) does determine ~X if every point of x has 

either a compact neighborhood, or a base of open and closed 

neighborhoods. Other sufficient conditions are given for 

C#{X) to determine ~X. I close with some remarks and open 

problems. 

2.	 Using C·# (X) to Compactify X 

We will make use of the following characterization of 

C#{X) due to a number of authors. Recall that Z(f) = 

{x E X: f(x) o} and uX denotes the Hewitt real compactifica

tion of X. 

2.1 Theorem. If f E C(X)~ then the following a~e 

equivalent. 

(a) f	 E C# (X) • 



171 TOPOLOGY PROCEEDINGS Volume 2 1977 

(b) f E C*(X) and f[D] is closed (and hence finite) for 

every C-embedded copy D of N. 

(cJ f E C*(X) and f[Z] is closed for every zero-set Z 

in X. 

(dJ	 f E C* (X) and for every r E R., C1SxZ(f-r) = Z (Sf-r) . 

(e)	 f E C* (X) and for every P E SX\ uX-, there is a 

neighborhood of p in SX on which Sf is cons tan t. 

The equivalance of (a) and (b) seems to appear first 

in [NR]. The equivalence of (a), (b), (c), (d) appears in 

[el], and that of (a), (b), (d), and (e) in [SZ 2]. Mappings 

that satisfy (d) are a special case of what are called WZ-

maps by T. Isiwata, who showed that any map that sends zero

sets to closed sets in a WZ-map, and that a WZ-map on a normal 

space is closed [I 2], [W, p. 215]. More important for this 

paper is the following result. For any subset S of X, let 

Fr S = ct S n ct(X\S) denote the boundary (or frontier) of 

S. 

2.2 Theorem. If X is realcompact and f E C#(X)., then 

Fr Z(f-r) is compact for every r E R-, and f is a closed 

mapping. 

By Theorem 2.1 (d,e) if r E R, then either Z(f-r) is 

compact or Fr Z(Sf-r) c X. In the latter case, Fr Z(f-r) 

Fr Z(Sf-r). In either case Fr Z(f-r) is compact. In [1.2, 

1.3], T. Isiwata shows that a WZ-map with this latter property 

is closed, so the theorem is proved. 

Recall that a space X is called rimcompact if it has a 

base of open sets with compact boundaries. X is said to be 

zero-dimensional at x if x has a base of neighborhoods with 
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empty boundaries, and X is called zero-dimensional if it is 

zero-dimensional at each of its points. It is shown in [M3] 

that every rimcompact space has a compactification ~X such 

that ~X\X is zero-dimensional, and wherever yX is a compacti

fication of X with yX\X zero-dimensional, there is a continu

ous map of ~X onto yX leaving X pointwise fixed. ~X is called 

the Freudenthal compactification of X. 

In [D], R. Dickman shows that if X is rimcompact, then 

every f E C*(X) such that Fr Z(f-r) is compact for every 

r E R has a (unique) extension in C(~X). Hence the following 

is an inwediate consequence of Theorem 2.2. 

2.3 Corollary. If X is rimcompact and realcompact~ then 

every f E C#(X) has a (unique) extension ~f E C(~X). 

Suppose S is a subring of C*(X) that contains the con

stant functions and yX is a compactification of X such that 

every f E S has an extension yf E C(yX) and sy = {yf: f E S} 

separates the points of yX. 

there is an f E S such that yf(x ) 0 and yf(x ) = 1). Then1 2

by the Stone-Weierstrass Theorem, sy is dense in C(yX) in its 

uniform topology [GJ, 16.4], and we say that S determines the 

compactification yX of X. Note that S determines a compacti

fication of X if points can be separated from disjoint 

closed sets by functions in S. 

If ylx and Y2X are compactifications of X for which there 

is a homeomorphism of ylx onto Y2X keeping X pointwise fixed, 

then we write Y1 X = Y2X. 

For any space X, let C#(SX) = {Sf: f E C#(X)} and note 

that C#(SX) and C#(X) are isomorphic. Similarly, if X is 
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#realcompact and rimcompact, then by Corollary 2.3, C (X) is 

isomorphic to C#(~X) = {~f: f E C#(X)}. 

A subring A of C*(X) is called algebraic if it contains 

the constant functions and those members f E C*(X) such that 

f2 E A. If, in addition, A is closed under uniform convergence, 

then A is called an analytic subring of C*(X). The closure 

in the uniform topology of a subset B of C*(X) will be de

noted by uB. It is noted in [GJ, 16.29], that if A is an 

algebraic subring of C*(X), then uA is an analytic subring. 

If B c C*(X), then a maximal stationary set S of B is a 

subset of X maximal with respect to the property that every 

fEB is constant on S. In [GJ, 16.29-16.32], the following 

is established. 

2.4 If X is compact and A is an algebraic subring of 

C*(X)~ then every maximal stationary set of A is connected 

and uA = {f E A: f is constant on every connected stationary 

set of A}. 

If X is rimcompact and realcompact, then, by the above 

C#(~X) is an algebraic subring of C*(~X). Next, I make use 

of the above to establish: 

2.5 Theorem. If X is a realcompact space and C#(X) 

determines a compactification yX of X~ then X is rimcompact 

and yX = <PX. 

Proof. Suppose x E X and V is an open neighborhood of 

x. By assumption there is an f E C#(X) such that f(x) = 0 

and f(X\V) = 1. If 9 = (f - !.) v 0, then, by Theorem 2.2
2 

Z(g) is a neighborhood of x with compact boundary that is 
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contained in V. Hence X is rimcompact, and so A = C#(~X) 

is an algebraic subring of C*(~X). Assume without loss of 

generality that X is not compact, let S denote a maximal 

stationary set of A, and suppose S has more than one point. 

Since A determines a compactification of X, it follows that 

S c ~X\X. Since the remainder of X in ~X is totally discon

nected, S reduces to a point and Theorem 2.5 is established. 

Next, I give an example to show that C#(X) need not 

determine a compactification of a realcompact and rimcompact 

space. For any space X, let R(X) denote the set of points of 

X which fail to have a compact neighborhood. Clearly R(X) 

is closed since X\R(X) is open. 

2.6 Example. A realcompact rimcompact space S for 

which R(X) is a compact connected maximaZ stationary set. 

Let W* denote the space of ordinals that do not exceed 

the first uncountable ordinal wI' and let W = w*\{w }. Itl 

is well known that W* is compact and every f E C(W) is 

eventually constant [GJ, 5.13]. Let X = [0,1] x W* with the 

topology obtained by adding to the product topology every 

subset of [0,1] x W. Clearly X is rimcompact and R(X) = 

[0,1] x {wI}. Moreover, X is the union of a realcompact 

discrete space and the compact space R(X), so X is realcom

pact [GJ, 8.16]. Suppose 0 < r < s < 1 and g E C*(X) is 

such that g(r,w) ~ g(s,w). Since [0,1] is connected, since 

every f E C(W) is eventually constant, and since W has no 

countable cofinal subset, there is an a > wI' and an increas

ing sequence {x } of real numbers between rand s such that n 

g(xn,a) ~ g(xm,a) if n r ffi. Thus g assumes infinitely many 
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values on a closed discrete subspace of X and hence cannot 

be in C#(X) by Theorem 2.l(b). So R(X) is a maximal sta

tionary set of C#(X). 

It is clear that C#(X) always contains both the subring 

CK(X) of all functions with compact support and the subring 

CF(X) of functions with finite range. Clearly any point of 

X\R(X) can be separated from any disjoint closed set by some 

element of CK(X), and if X is zero-dimensional at a point x, 

then x can be separated from any disjoint closed set by some 

element of CF(X). This together with 2.4 and Theorem 2.5 

proves: 

2.7 Theorem. If X is a rimcompact, realcompact space 

that is zero-dimensional at each point of R(X)~ then C#(X) 

determines ~X; that is~ u C#(~X) = C(~X). 

Along these lines we have also: 

2.8 Theorem. If X is a rimcompact and realcompact 

space such that c~~X(~X\X) is zero-dimensional~ then 

u C#(~X) = C(~X). 

Proof. By the remarks proceeding the proof of Theorem 

2.7, if S is a maximal stationary set for C#(¢X) with more 

than one point, then S c ct~x(~X\X). Since the latter set 

is zero-dimensional, S reduces to a point and the conclusion 

follows. 

In [II, Theorem 36, p. 114], it is shown that if ~X\X 

is a Lindelof space, then the Lebesgue dimension of ~X\X is 

zero. In [P, Corollary 5.8] it is shown that if F is a 

closed subset of a normal space Y, then the Lebesgue dimension 
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of Y does not exceed the Lebesgue dimensions of A or (Y\A). 

It follows that if R(X) is compact and zero-dimensional, 

then ex' q>X (q>X\X) (q>X\X) U R(X) is zero-dimensional, for 

these two motions of dimensionality coincide at 0 if X is 

compact; see [P, pp. 156-157]. Note also that q>X\X is a 

Lindelof space if and only if every compact subset of X is 

contained in a compact subset with a countable base of 

neighborhoods; in which case we will say that X is of 

countabZe type. [II, p. 119]. Thus we have established: 

2.8 Corollary. If X is a rimcompact~ realcompact space 

of countable type~ and R(X) is compact and zero-dimensional~ 

then u c# (<PX) = C (<PX) • 

3. Remarks and Open Problems 

A.	 In [N], the ring of all closed f E C(X) is considered 

for X locally compact and weakly paracompact ( = meta

compact). For X realcompact this latter ring coincides 

with C#(X) by Theorem 2.2. Recall also that W. Moran 

showed in [M3] that if every closed discrete subspace of 

a normal metacompact space X is realcompact, then so is 

X. Also, examination of Example 3 of [N] shows that 

this latter need not hold if X fails to be normal. 

B.	 In a private communication S. Willard notes that if 

f E C*(X) and f is a closed mapping, then Z(f) has a 

countable base of neighborhoods in X. (I.e., Z(f) 

00 -1 
ni=lf (-l/i,l/i)). It would be of great interest to 

characterize the zero-sets of elements of C# (X) at least 

in case X is rimcompact and realcompact. To determine 

which such spaces determine X, it would probably be 
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enough to characterize zero-sets of restrictions to X 

of u C#(<PX). 

C.	 Willard notes also that if S is a countable subset of X 

and c£<pXS is connected, then S is a stationary set for 

C#(X). It follows from a theorem of McCartney [Ml, 

Proposition 3.12] that if Y = [0,1] x (0,1] U Z, where 

Z = {(q,O): 0 < q < 1 and q is rational}, then <PY = 

[0,1] x [0,1]. Hence, by the latter remark of Willard 

cited above, Z is a stationary set for C#(Y), so Y is 

a separable, metrizable rimcompact space such that C#(Y) 

does not determine a compactification of Y. 

D.	 Suppose X = [0,1] x Q n [0,1], where the open sets of X and 

those in the product topology together with any subset 

of {(a,b) EX: b > oJ. Then R(X) = {(a,b) E X: b = O} 

is compact and connected, X is rimcompact, realcompact, 

and determines <PX. So the hypotheses of Theorem 2.7 or 

2.8 are not necessary for X to determine <PX. 
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