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CONTINUOUS LATTICES, TOPOLOGY AND 

TOPOLOGICAL ALGEBRA1 

Karl Heinrich Hofmann 

In 1974 Jean Dieudonne wrote an article in la Gazette 

des Mathematiciens in which he philosophized on what he 

believed to constitute noble mathematics and servile mathe­

matics. He arranged all the mathematics he could think of 

in a vertical hierarchy. General topology, located on the 

lowest level of the hierarchy appears to be a rather ignoble 

commodity. And where is lattice theory? Must we conclude 

from its absence that, having been banned from the hier­

archy, it is totally without redeeming value? 

Nevertheless, this lecture will be on topology and 

lattice theory. We will discuss under the name of continuous 

lattices a relatively novel class of lattices which emerged 

quite independently in various guises in different branches 

of mathematics ranging from computer science to category 

theory under the dictate of need. Recent research demon­

strated its significance and elucidated its role as a link 

between different areas. For the purpose of this lecture 

we will restrict our attention prim~rily to bonds with 

topology. 

Even Dieudonne acknowledged that any line of mathematics 

may escalate to a higher level of existence in his mathe­

matical universe under the influence and imagination of a 

lAddress given at the NSF Conference on Topology at 
Louisiana State University, Baton Rouge, La., March 11, 1977. 
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new leader. Our story will be about the leadership of mathe­

maticians like J. D. Lawson and Dana Scott. 

Introduction 

In order to define a continuous lattice, we observe 

that in any partially ordered set we may define an auxiliary 

transitive relation by x « y whenever for any subset A with 

y ~ sup A we find a finite subset F ~ A with x ~ sup F. The 

relation x « y implies x ~ y, but it may never hold for all 

we know; if there is a smallest element 0, then 0 « x for 

all x. More generally, for a finite partially ordered set 

we have x « y iff x ~ y. Otherwise, even in cases where 

this relation is prevalent, it is not generally reflexive. 

An element x with x «x is called compact. 

Now	 we can introduce the following definition 

Definition. A partially ordered set L is called a 

continuous lattice iff 

(0)	 L is a complete lattice (i.e. every subset has a 

least upper bound) 

(1) ('Ix E L) x = sup{u E L: u « x}. 

It is called an algebraic lattice iff it satisfies (1) and 

(2) ('Ix E L) x = sup{k E L:k « k < x}. 

The subset K(L) of compact elements is always a sup-semi­

lattice. 

A lattice is arithmetic, iff it is algebraic and the 

set K(L) is a sublattice. 

The implications finite ~ arithmetic ~ algebraic =;> 

continuous ~ complete are clear, and none of these implica­

tions can be reversed. We will see much of most of these 
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in the sequel; each class is closed under forming arbitrary 

products. Each complete chain is a continuous lattice. 

The lattice of open sets of a locally compact space is con­

tinuous, where U « V if we have a compact set with U ~ C ~ V. 

The lattice of open sets of a Boolean space is algebraic 

with the compact open sets being precisely the compact 

elements in the lattice. Scott's universe Pw = {xix ~ w} 

for recursive function theory and the A-calculus is an alge­

braic lattice. The lattices of all ideals of a ring, or of 

subgroups of a group, or of congruences of a general algebra 

are algebraic, the compact elements being the finitely gener­

ated objects. (So much for terminology.) 

The lattice of two sided closed ideals of a C*-algebra 

is continuous. The lattice of lower semicontinuous extended 

functions f: X + R u {±oo} on a compact space is continuous. 

The concepts of algebraic and arithmetic lattices are tradi­

tional; the concept of a continuous lattice has been intro­

duced by D. Scott about 5 years ago and he baptized them. 

They should not be mixed up with the continuous geometries 

of von Neumann. The definition given above is about two 

years old. Let me draw your attention to one feature which 

sets these concepts apart from the cherished features of 

classical lattice theory: They are asymmetrical insofar as 

conditions (1) and (2) are not symmetric (i.e. invariant 

under passage to the new relation x <op y iff Y < x. In 

fact «op is not derived from <op as is « from <. We will 

return to this motive of asymmetry time and again; it may be 

one of the reasons that the fruitful exploitation of these 

concepts is recent. 
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Some General Thoughts on the Relation Between 

Topology and General Topology 

Traditionally, topology and lattice theory touch in 

several contexts. We list a few: 

1) To each topological space X one associates the 

lattice O(X) of all open sets (sometimes the sublattice 

OC(X) of open closed subsets). There are ways to associate 

with a lattice L a topological space called its spectrum 

Spec L. One finds natural functions X ~ Sppc O(X) and 

L ~ O(Spec X) which may be interpreted and utilized in dif­

ferent ways: Firstly, X ~ Spec O(~) will reveal how much 

information on the space X can be retrieved from knowing the 

lattice O(X) and to what extent "topology without points" 

is possible. The history of this line of investigation bears 

the marks of Dowker, Papert and Papert, Benabou, Isbell. 

Secondly, L ~ O(Spec X) affords a method to represent lattices 

as lattices of open sets. One would not expect a universally 

applicable representation theory since O(X) is always a 

distributive lattice whereas many important lattices (such 

as the lattice of subgroups of a group, or the lattice of 

projections of a Hilbert space (playing an important role 

in the foundation of quantum mechanics» are not distributive. 

In many respects distributivity is to the lattice theoretician 

what commutativity is to the group theoretician: There are 

many interesting problems attached to the special class, 

but others are entirely outside its scope. The usefulness 

of the representation theory of lattices through this method 

has the most venerable tradition in lattice theory, as is 
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illustrated by the classical Boole-Stone representation 

theorem for Boolean lattices, which was expanded by Stone to 

a wide class of distributive lattices. 

2) On each space we have a quasi order given by x < Y 

iff Y E {x}- (iff for all open sets U one has x E U if 

Y E U). This relation is a partial order iff the space is 

TO. Conversely, if a partial ordered set is given, there 

are numerous ways of making a To-topology from the order. 

(Example: Basic open sets: {xlalx}, a E L). 

Why would To-spaces deserve particular attention when 

so many articles or lectures begin "we will assume through­

out that all spaces are Hausdorffll and when, for instance in 

the theory of topological groups, To-separation already im­

plies Hausdorff complete regularity? 

One principal motivation for considering To-spaces is 

the spectral theory of commutative rings (algebraic geometry) 

and of algebras such as Banach algebras, operator algebras 

(functional analysis), or the study of congruences on algebras 

of a general type (universal algebra). Specifically, let R 

be a commutative ring, and let Spec R be the set of all prime 

ideals P (i.e. R'P is a multiplicative semigroup) , and call 

a subset h(X) = {p E Spec R: X ~ p} the hull of X c R. 

Trivally, h(U.X.) = n.h(X.); but the primeness of P guarantees
] ] ] ] 

also that P E h(x) U h(y) iff x E P or yEP iff xy E P iff 

P E h(xy). The sets o(x) = Spec R'h(x) thus form a basis of 

open sets of a topology, called the hull-kernel topology. 

It is at the heart of all spectral theory. The hull kernel 

topology is To' but rarely better. Notice that the sets 

o(x) are quasicompact and open. 
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If A is a C*-algebra, then the set Aof unitary equiva­

lence classes of irreducible *-representations on a Hilbert 

space is a non-separated topological space with the property 

that the lattice Id A of closed two sided ideals of A is 

isomorphic to O(A),. 

If A is a universal algebra, belonging to an equational 

class, then the lattice of congruences is a central object 

of study in universal algebra. One may again assign to the 

algebra a space, namely, the space of irreducible congruences. 

Its topology is a hull-kernel topology. Again most spaces 

arising in this way are not separated. Another reason to 

consider To-spaces comes from classical considerations of real 

valued functions. The study of lower semicontinuous func­

tions f: X + R U {±oo} is subsumed in continuous function 

space theory if we admit on the range the To-topology of all 

open intervals which are unbounded above. 

3) A third motive relating topology and lattices arises 

from the endeavor to introduce on a lattice in a natural way 

topologies relative to which the operations (x,y) I~ xy = 

X A y, X v yare continuous. Much has been written on this 

branch of topological algebra. Any totally ordered set can 

serve as motivating example with the interval topology. 

1. To-Spaces and Continuous Lattices 

Let us introduce some notation: For a poset L and a 

subset A ~ L we write tA = {x E L: (3 a) a E A and a < x}. 

We write ta in place of t{a}. The notation 4-A is defined 

dually. We write tx = {y E Lly « x} and +x = {y E Llx « y}. 
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1.1. Definition. Let L be a poset. Then U ~ L is 

Scott-open, iff tu = U and (VD) D up-directed with sup D ~ U 

~ D n U ~~. The collection of all Scott-open subsets is 

the Scott-topology. Every L\tx is Scott-open (whence the 

Scott topology is To). The topology generated by all L\tx, 

x E L is called the spectral topology. It is likewise To. 

We will see how it relates to hull-kernel topologies. The 

least upper bound of the two topologies will be called the 

Lawson topology. 

Notice that the spectral topology is not the opposite 

of the Scott topology. Thus the Lawson topology is not a 

symmetric concept. Every Scott-open set U is Lawson-open, and 

by 1.1, the converse is true if U = tu holds; thus a set 

U with tu = U in a complete lattice is Scott open iff it is 

Lawson open. We note that y E int tx (with int denoting 

interior relative to the Scott- or the Lawson-topology) 

implies x «y. The converse holds in continuous lattices. 

We now have the following theorem: 

1.2. Theorem (1977). Let L be a complete lattice. 

Then the Lawson-topology on L is quasicompact TI and the 

second of the following statements implies the first 

(1) The Lawson-topology is Hausdorff. 

(2) L is a continuous lattice. 

Proof. Thesubbasic sets of the Lawson topology are of 

~he form U with a Scott open U and L,tx, x E L. Let 

L ~ U.U. U U.(L\tx.) = U.U. U (L'n.tx.). Suppose no finite 
11] ] 1 1 ] ] 

subfamily covers. For any finite set J of indices j, let 

Then for all i and all J there is an s with 



186 Hofmann 

s i Ui and s E txJ . Thus xJ i Ui. If x = sup x J = sup x j ' 

then x i L'tsup x. = U. (L'tx.). Hence there is an i with 
] ] ] 

x E Ui. By the definition of the Scott topology, there is a 

J with x E Uj' and this is a contradiction. Thus the Lawson
J 

topology is quasicompact. If we have x i y, then L'~x is a 

neighborhood of y not containing x and L~ty is a neighborhood 

of x not containing y. Thus the Lawson-topology is Tl . 

(2) =9 (1): Let x i Yi by (2) find u « y and x i u. 

Then L'tu and tu are disjoint neighborhoods of x and y, re­

spectively. 

Remark. If L is meet continuous (~.1.6 below), then (1)<=> (2).
 

Indeed if x < y, then by (1) there is a basic neighborhood
 

U\tF of x, U Scott-open and F finite, such that y is in the
 

interior of its complement, i.e. y E int tF. By meet continu­


ity, int tF = U{+u: u E F}. Hence u « y for some u E F, and
 

u ..$. x. The case y .$. x is reduced to this one. Hence y = sup ty .
 

This is a first characterization of continuous lattices 

among complete lattices by topological means. The first 

part of the proof is due to D. Scott. 

We noticed that on any posets there exist To-topologies. 

Let us now start from To-spaces and detect under what condi­

tions one returns to lattices. 

All spaces are To from here on out. We present Scott's 

approach (1972). 

1.3. Definition. A space Z is called injective iff 

for every pair X c Y of spaces every continuous function 

f: X + Z extends to a continuous function F: Y + Z. 
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This is equivalent to saying that Z is a retract of 

every containing space. 

Note. This definition is categorical in the following 

sense: Let A be a category and J a class of monies. Then 

Z E ob A is a J-injective iff for every pair of morphisms 

j: X ~ Y and f: X ~ Z with j E J there is a morphism 

F: Y ~ Z with f Fj. If A = To is the category of To-spaces 

and J the class of ernbeddings, then the injectives of 1.3 

are precisely the J-injectives. 

Examples. Trivially every singleton space is injective. 

The lattice 2 = {O,l} with the Scott topology has {I} as the 

only non-trivial open set (the "Sierpinsky space"); it is 

easily seen to be injective. Indeed a continuous function 

f: X ~ 2 is just the characteristic function of an open set 

and thus, by the definition of induced topology, extends. 

Products of injectives are injectives, as are retracts. 

Since every To-space X is embeddable into 2TOp (X,2), every 

space is embeddable into an injective one and the retracts 

Mof the spaces 2 are precisely the injective ones. 

Here then is Scott's theorem: 

1.4. Theorem (Scott 1972). Let L be a To-space with 

the partial relation ~ defined by "x < y iff for all open 

sets U we have x E U implies y E U. " 
Then the following two condi tions are equivalent: 

(1) L is an injective To-space. 

(2) L is a continuous lattice (relative to <) • 

Moreover~ if these conditions are satisfied~ then the topology 

on L is the Scott-topology associated with (L,<). 
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In order to speak of functions in greater detail, we 

denote the full subcategory of the category Top of topologi­

cal spaces and continuous maps whose objects are injective 

To-spaces (hence continuous lattices) by Cont. One of Scott's 

main discoveries was that Cont is a cartesian closed category. 

This does not only allow the creation of new continuous lat­

tices by forming products, but also by forming function spaces 

which was one of the main motivations for Scott in his 

creating models for the A-calculus. (We will speak on the 

formation of quotients and subobjects later when we have a 

more subtle understanding of special types of morphisms.) 

1.5. Lemma. A function f: L ~ L' between two complete 

lattices is Scott-continuous iff it preserves sups of up­

directed sets. A function f: L x L2 ~ L of several varia­l 

bles (with continuous lattices L L and L) is continuousl , 2 

with the product of the scott-topologies iff it is continu- y 

ous in each variable separately. (D. Scott). 

The result about separate and joint continuity of multi­

variable functions is somewhat delicate. It seems unknown 

whether it is true for complete lattices in general. After 

a recent observation by Hofmann and Gierz it suffices that 

L L are complete and the Scott topology O(L ) of L is al , 2 2 2 

continuous lattice. 

The sup operation (x,y) I-···~ x v y: L x L ~ L is Scott 

continuous in any complete lattice. (This does not say that 

it is continuous for the product topology on L x L which is 

possibly coarser than the Scott topology on L x L. For both 

topologies to be equal it suffices that O(L) be continuous.) 
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This fails for the inf operation in general. Hence one is 

challenged to add a definition: 

1.6. Definition. A lattice is called meet continuous 

(MC) iff it is complete and (x,y) ~> xy: L x L + L is 

continuous. This latter condition is equivalent to the 

following condition: 

(MC) For each chain DeL and each x E L we have x sup D 

sup xD. 

Recall that a complete lattice is Brouwerian iff it 

satisfies (BC): For each subset DeL and each x E L we have 

x sup D sup xD. Thus every Brouwerian complete lattice is 

MC, and a meet continuous lattice is Brouwerian iff it is 

distributive. In particular, all lattices O(X) are Brouwerian, 

hence MC. 

From our later observations it will be immediate (and 

Scott showed a direct proof) that every continuous lattice 

is meet continuous; the converse is not true. Thus we have 

refined the hierarchy of lattices which we gave in the begin­

ning. We also observe as a consequence of 1.2 and 1.6 

1.7. Proposition. If L is a meet continuous lattice~ 

then L is a quasicompact Tl-topological semi lattice (relative 

to inf and the Lawson-topology)~ provided O(L) is continucus. 

Proof. Let m: L x L + L be the multiplication
 

-1
(x,y) xy. If U cL is Scott open, then m (U) is open 

since L is meet continuous. If x E L is arbitrary, then 

rn- l (L,tx) = L x L'{(s,t) E L x LI st > x} = L x L'\.t(x,x) is 

~ 

spectral-open. (0 (L) continuous => 0 (L x L) O(L) x O(L).) 
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From 1.7 and 1.2 we draw the corollary that a continuous 

lattice is a compact topological semilattice in the Lawson­

topology. 

If X is a topological space, then O(X) is meet continu­

ous. If O(X) is a continuous lattice, then O(X) is a com­

pact T topological n-semilattice, and it is a topological
2 

lattice for the Scott topology. As Isbell would say "any 

continuous topology is a topological topology," which makes 

more sense than "a rose is a rose is a rose." He points 

out, too, that contrary to what had been previously asserted 

by Scott, himself and myself, a topology need not be topologi­

cal in general. 

If X is an injective To-space, then the lattice O(X) of 

Scott open even subsets is isomorphic to Cont(X,2) (where 2 

has the Scott topology). In the process of establishing that 

Cont is cartesian closed, Scott showed: 

1.8. Lemma. If L,L ' E Cont~ then the topology of 

pointwise convergence is the Scott-topology for the pointwise 

partial order (f .~ g iff f (x) ~ 9 (x)) and Cant (L,L I) E Cant 

(i.e. Cont(L,L ' ) is a continuous lattice). 

In particular, then if X E Cont, then O(X) ~ Cont(L,2) 

is a continuous lattice. We notice: 

1.9. Lemma. For a topological space X the following 

statements are equivalent: 

(1)	 O(X) is a continuous lattice. 

(2)	 For each point x and each open neighborhood U of x 

there is an open neighborhood V ~ U of x such that 
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every filter on V clusters in U (i.e. every ultra­

filter on V converges in U). 

Isbell calls these spaces semi-locally bounded, while 

A. S. Ward called them quasi locally compact. For the present 

purposes I will adhere to the following less colorful defini­

tion: 

1.10. Definition. A space will be called a CL-space 

iff O(X) is a continuous lattice. 

We have seen that all injective To-spaces are CL-spaces. 

From 1.6 it is clear (and B. J. Day and G. M. Kelly are on 

record (1970) for this observation in a different terminology) 

that every locally quasicompact space is a CL-space (where 

a space is locally quasicompact if every point has a basis 

of quasicompact neighborhoods). We will say more on this 

later. But in the context of function spaces we are now 

ready for Isbell's theorem which is the conclusive word on 

function spaces and continuous lattices: 

1.11. Theorem. (Isbell 1975) Let L be a complete 

lattice and X a space 3 and consider L with its Scott topology 

(making it into a To-space). Consider S = Top(X,L) with the 

pointwise partial order. Then the following statements are 

equivalent: 

(1)	 X is a CL-space 3 and L a continuous lattice. 

(2)	 S is a continuous lattice (i.e. an object of Cont in 

its Scott topology which is the topology of point­

wise convergence). 
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Proof. If (1) is satisfied, then Top(X,2) ~ O(X) is 

M a continuous lattice. Now L is a retract of some 2 , but 

Top(X,-) preserves products and retracts. Thus Top(X,L) is 

a retract of an injective space, hence is injective. So 

(2) holds. Conversely, suppose (2). Consider the retraction
 

f 1--> sup f: Top{X,L) ~ L which is right adjoint to const:
 

L ~ Top(X,L), const(s) (x) = s: Indeed s ~ sup f iff
 

const s ~ f. But const preserves sups, hence is continuous.
 

Thus L is a retract of Top(X,L) hence is a continuous lattice.
 

Now 2 is a retract in Cont of L, hence Top(X,2) is a retract
 

in Top of Top(X,L), hence is injective and so X is a CL-space.
 

We notice that the augmented reals R R u {±oo} form 

a continuous lattice and that for any locally compact space 
~ 

X, the space Top(X,(R, Scott)) is exactly the space LC(X, R) 

of extended lower semicontinuous functions. Isbell's Theorem 

(1.11) together with 1.2 then says that there is a compact 

function space topology on LC(X, R) relative to which inf 

is a continuous operation. I do not know whether this fact 

is known in classical analysis. 

We mentioned the observation by Day and Kelly that 

locally quasicompact spaces X have a continuous lattice of 

open sets. A complete characterization of CL-spaces appears 

to be difficult after Isbell and Hofmann and Lawson found 

CL-spaces in which every quasicompact set has empty interior. 

Nevertheless something can be said. Let us recall that a 

space is primal (or sober) if every closed set which is 

irreducible (i.e. cannot be the union of two proper subsets) 

has a dense point. Every To-space allows a universal 
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v 
embedding X + X into a sober space. We now have the follow­

ing theorem. 

1.12. Theorem (Hofmann and Lawson, 1977). For a
 

TO-space X the following statements are equivalent:
 

(1) X	 is a CL-space. 

(2) The	 sobrification of X is locally quasicompact. 

Let L be a complete lattice and let Spec L be the set 

of all primes p < 1 with the topology induced by the spectral 

topology; this topology is also called the hull-kernel to­

pology. For instance, X = Spec O(X), and the embedding of X 

is given by x I---~ x'TXT. Let us call a subset X of a lat­

tice L order generating if every element is the inf of a 

subset of X. We then have 

1.13. Theorem (Hofmann and Lawson, 1977). Let L be a 

distributive continuous lattice. Then Spec L is order gen­

erating and the map x I~ Spec L'\.tx: L + O(Spec L) is an 

isomorphism of lattices. Further~ Spec L is a sober locally 

quasicompact space~ and all such spaces are so obtained. 

More specifically, any order generating subspace X of
 

Spec L is a CL-space~ and every CL-space is so obtained.
 

2.	 Compact Semigroups 

Workers in topological algebra and functional analysis 

are interested in compact topological and semitopological 

semigroups. Let us accept for the moment that the abelian 

ones playa particularly important role. Suppose that S is 

a	 monoid (= semigroup with identity). Then E(S) =
 

2

{s E sIs = s} is a submonoid and if S is topological then 
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E(S) is closed (if S is semitopological, this is not generally 

the case). In the structure theory of S the monoid E(S) is 

an important functorial invariant. Let us mention an example 

even though it does not totally fit the topological case: If 

G is a locally compact abelian group and M(G) its measure 

algebra, then its structure space ~M(G) according to J. Taylor 

is a compact semitopological abelian semigroup in which cer­

tain elements of E(~M(G)) (so called critical idempotents) 

correspond bijectively to locally compact group topologies on 

G refining the given one and they form the index set for an 

explicit sum representation of the cohomology of ~M(G). In 

fact ~M(G) is the character semigroup of a compact abelian 

topological semigroup. 

2.1. Definition. A compact topological semilattice 

is a compact space with a continuous commutative idempotent 

multiplication with identity. 

Apart from the applications, compact topological semi­

lattices are, in the simplest cases, easy to come by and 

therefore yield a useful supply of examples in the theory 

of compact semigroups. We will always use the word compact 

semilattice for compact commutative idempotent monoid. Every 

product of compact semilattices is one, every closed sub­

semilattide of a semilattice is again one. Quotients of 

compact semilattices are compact semilattices, so they form 

a quasivariety. All totally ordered order complete sets 

(such as the unit interval I and the Cantor set C) are compact 

semilattices under min. By the preceding they co-generate a 

large subvariety if not (as would be a priori conceivable 
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and	 was indeed believed for some years) the entire class. 

It was observed early that compact semilattices exhibit some 

interesting phenomena which are not present with compact 

groups: The Cantor semilattice C allows I as quotient (via 

Cantor's gap closing function) but dim C 0 and dim I = 1 

(by anybody's dimension count), and so there are dimension 

raising morphisms around. This was known to Wallace and 

Koch around 1960 but was only recently clarified completely 

(Hofmann, Mislove, Stralka 1973). Studies in compact 

topological lattices and semilattices were undertaken by 

Wallace's school since the fifties. 

We mention one basic theorem due to R. J. Koch. Let us 

write CS for the category of compact semilattices with con­

tinuous semilattice morphisms preserving identities. 

2.2. Theorem. Let S E CS. Then the following state­

ments are equivalent: 

(1)	 S is connected. 

(2)	 If k E S is a local minimum (i.e. k is isolated in 

Sk) then k O. 

(3)	 For each s E S there is a connected compact chain 

T ~ Ss with {s,O} ~ T. 

(4)	 S is acyclic (over any coefficient module). 

The topological algebra of semilattices began moving 

strongly when J. D. Lawson arrived and attacked the question 

whether or not compact semilattices had a character theory 

somewhat like that of compact abelian groups, where morphisms 

into the circle group were replaced by morphisms into the 

semilattice I. The first problem which poses itself in this 
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context is whether or not the morphisms S + I separate the 

points of a compact semilattice. This is tantamount to ask­

ing whether any compact semilattice is a subsemilattice of 

some "cube." Lawson proved the following theorem: 

2.3. Theorem. Let S E CS 3 the following statements 

are equivalent: 

(1)	 CS(S,I) separates the points of S. 

(2)	 [resp. (2')] S has small [open] semilattices (i.e. 

every	 point has a basis of [open] neighborhoods U 

· h 2W1"t U ~U). 

(3)	 S is ultra-uniform 3 i.e. the uniform structure of 

S has a basis of neighborhoods W of the diagonal 

in S x S which is a subsemilattice of S x s. 

It was believed for some time that all CS-objects 

satisfied these conditions. But Lawson established the 

existence of a topologically one dimensional semilattice on 

which all morphisms into the unit interval are constant. 

That was in 1970, and it is hard even today to come by 

examples of CS-objects which do not satisfy the conditions 

of Theorem 2.2. The recent discovery by J. W. Roberts of 

compact convex subsets without extreme points in topological 

vector spaces yields a class of such examples, since for every 

compact convex subset X of a topological vector space the set 

S of all compact co~vex subsets A c X is a compact semilattice 

under the operation (A,B) t-> AB closed convex -hull of 

A U B (R. A. Jamison, J. D. Lawson). The semilattice satisfy­

ing the conditions of 2.2 are called compact Lawson semi-

Zattices. Let us denote the full subcategory of CS consisting 
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of compact Lawson semilattices by CL. By Lawson's discovery 

there is a gap between CS and CL. One wonders about the 

category of all compact semitopological semilattices (in 

which multiplication if only separately continuous). But 

here we have a more recent result of Lawson's: 

2.4. Theorem (1976). Any compact semitopological semi­

lattice is topological. 

The following question poses itself naturally: 

Let S E CS; what are topological (or algebraic) hypothe­

ses on S which entail S E CL? Lawson showed that dim S < 00 

and local connectivity are enough. In fact he proves more. 

We need a few ideas on the connectivity relation on spaces. 

Let C be the relation of connectivity on the space X, i.e. x 

x C y iff there is a connected subspace Y ~ X with x,y E Y. x 

We say that a subspace Y c X is fitted into X if Cy 

cxlY (= C n (yxy)). We say that an equivalence relation Rx 
on a space is lower semicontinuous if R(A) = R(R(A)-) for 

all A ~ X. Finally we say that a neighborhood W of x in X 

is well-fitted iff (i) W is compact, (ii) each point v E int W 

has a basis of compact neighborhoods V such that V is fitted 

into Wand (iii) Cw is lower semicontinuous. 

We notice that every space which is locally a product of 

a compact zero dimensional space and a locally connected 

space has a well-fitted neighborhood around each point. 

2.5. Theorem (Lawson 1977). If S E SC has a well­

fitted finite dimensional neighborhood at each point, then 

S E CL. 
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In particular, one retrieves the old fact, due to a 

theorem of Numakura's: 

2.6. Remark. If S E CS is zero dimensional 3 then 

S E CL. 

The full category of zero dimensional objects in CS is 

called z. 

While character theory did not work too well for CS, 

and not particularly well for CL, it works superbly for Z. 

In fact we have: 

2.7. Theorem. The category! is dual to the category 

of semilattices ~ under the functors S I---~ CS(S,2): ~ + S 

and T I---~ ~(T,2): ~ + ~3 where the hom sets are given the 

pointwise structures. 

This is a parallel to Pontryagin duality for compact 

abelian groups; it is due to various authors such as Austin, 

Schnepermann, Bowman and was investigated in detail by Hof­

mann, Mislove, Stralka. 

What has all of this got to do with lattice theory? A 

very primitive observation is that the partial order given 

on a compact semilattice S by x < Y iff xy = x gives S the 

structure of a complete lattice. In fact it is not hard to 

see that we obtain a meet continuous lattice. If we denote 

with MC the category of all meet continuous lattices with 

morphisms preserving arbitrary infs and sups of updirected 

sets (i.e. Lawson-continuous morphisms) then we have CS c MC 

(considering any obvious forgetful functor an inclusion) . 

The question now arises: Is every CS-object in fact a 
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continuous lattice? The answer is no and the precise 

circumstances are exactly known by a result first estab­

lished by Hofmann and Stralka (1974). 

2.8. Theorem. Let L be a complete lattice. Then the 

following statements are equivalent: 

(1)	 L is a continuous lattice. 

(2)	 There is on L a compact Hausdorff topology such that 

L is a compact Lawson semilattice. 

If these conditions are satisfied~ then there is only one 

such topology~ the Lawson-topology. 

We add to this theorem our earlier observations on 

morphisms: 

Let f: L + L' be a function between two lattices. Then 

the following statements are equivalent: 

(I)	 f is a morphism of compact Lawson semigroups (rela­

tive to the Lawson-topologies). 

(II)	 f is a morphism of continuous lattices (as specified 

after 1.14). 

Notice that the appearance of a semilattice in (2) is evi­

dence once more of an asymmetric condition of work on the 

lattice L. 

Since every continuous lattice has exactly one compact 

semilattice structure (which indeed makes it into a compact 

Lawson semilattice) and since the underlying lattice structure 

of a compact Lawson semilattice is that of a continuous lat ­

tice, the categories of continuous lattice and of compact 
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Lawson semilattices are literally equal (not only naturally 

isomorphic). Our nomenclature is therefore justified: CL 

reads equally well as "continuous lattices" and as "compact 

Lawsons." We now have the following hierarchy of categories 

of complete lattices: CL c CS c MC. As we saw, very little 

has been known on CS'CL, and the same is true for MC\CS. 

The most recent result in this direction emerges from 

contributions by Gierz, Hofmann, Lawson, Mislove and reads 

as follows: 

2.9. Theorem (1977). Let L be a meet continuous lat­

tice. Then the following are equivalent: 

(1)	 L carries a (unique) compact semilattice topology 

(i.e.	 L E CS) 

(2)	 O(L) (the lattice of Scott-open sets) is a continu­

ous lattice (i.e. O(L) E CL) 

(3)	 In the Scott topologY3 L is a locally quasicompact 

space.
 

Furthermore 3 the following are equivalent:
 

(I)	 L carries a (unique) compact Lawson semilattice 

topology (i.e. L E CL) 

(II)	 O(L) E CL and every element of O(L) is a sup of 

coprimes 

(III)	 In the Scott toPOlOgY3 L is a locally quasicompact 

space with a basis of open filters. 

We still know little on sufficient conditions which would 

allow us to introduce on an MC lattice a CS or a CL topology. 

The only thing we have so far is a result of Lawson's 

(1976) : 
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2.10. Theorem. If S E MC~ and if S does not contain 

a copy of a free semi lattice in infinitely many generators~ 

then S E CL. 

This is just about all we know about what happens above 

CL. And below? Here the situation is quite good. In fact 

we	 have the following result due to Hofmann, Mislove and 

Stralka, which historically preceded Theorem 2.8: 

2.11. Theorem. Let L be a complete lattice. Then the 

following statements are equivalent: 

(1)	 L is an algebraic lattice. 

(2)	 There is on L a compact zero dimensional Hausdorff 

topology such that L is a compact semilattice. 

Thus the full subcategory of algebraic lattices in CL 

is precisely ~, the category of compact zero dimensional 

semilattices. More information can be given on the Pontryagin 

duality of Z and S first mentioned in Theorem 2.7. 

2.12. Proposition. Let L E~. Then the character 

semilattice £ = CL(L,2) of L is isomorphic to the sup-semi­

lattice K(L) of compact elements of L under the map 

X ~> min X-l(l): f. + K(L). An element s E L is in K(L) 

iff it is a local minimum in the Lawson-topology or the 

Scott topology. 

Let,	 S be a semilattice written multiplicatively. Then 

thel character semilattice § = ~(S,2) is isomorphic to the 

lsemilattice J (S) of filters on S under the map X ~> X- (1) : 

§ + J (S). 
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There are functorial relations in the hierarchy of 

lattices which point in the vertical direction. Thus it is 

often useful to associate with a complete lattice L a Z-ob­

ject PL which is simply the set of lattice ideals of L with 

the containment as order. The compact elements are the 

principal ideals and there is a canonical map r L : PL + L
 

given by rL(J) sup J~ Since is right adjoint to the
r L
 

map x ~> ix, it preserves arbitrary sups. We have the
 

following theorem (Hofmann and Stralka 1974):
 

2.13. Proposition. Let L be a complete lattice and
 

r L : PL + L the SUP-map given by rL(J) sup J. Then
 

(a) r is a lattice morphism iff L E MC.L 

(b) r preserves arbitrary infs (in addition to arbi­
L 

trary sups) iff L E CL. 

For a compact Lawson semilattice S the function 

r S : PS + S is a canonical way of representing S as a quotient 

of a compact zero dimensional semilattice. Notice that the 

~roposition is yet another characterization of continuous 

lattices. If L E CL then the right adjoint of r L associates 

with x E L the unique smallest dense ideal tx in ix. 

Conclusion 

Only the relations between topology and topological 

algebra were discussed in this lecture, and those only in a 

fleeting way. We could not touch the emergence of continuous 

lattices from the theory of computing which is in fact one 

of their sources opened up by Dana Scott. In category 

theory Alan Day and o. Wyler discovered that continuous 
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lattices are precisely the monadic algebras of filter and 

ultrafilter monads; this provides the link between continuous 

lattice theory and universal algebra. In recent months 

numerous occurrences of continuous lattices were discovered 

in functional analysis, and in fact R. Giles has noticed 

their appearance in his work in formalizing interpretive 

rules in the foundation of physics. 

Research in the area is in full flux, and it would be 

too premature to propose a summary at this time. It may, 

however, be of use to present a bibliography of the subject 

even before the results of the theory are laid down more 

comprehensively in a monograph which is in the early stages 

of planning. The attached bibliography was compiled in 

collaboration with J. D. Lawson and various participants in 

a workshop at Tulane University from April 2, through 

April 5, 1977. 
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