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A NECESSARY CONDITION FOR A 

DUGUNDJI EXTENSION PROPERTY 

L. I. Sennott 

The paper is organized into three sections. In Section 

1 we utilize a proof by E. Michael of the Arens-Eells Embed­

ding Theorem to show that if every continuous function from 

a subspace S of a topological space X into a complete locally 

convex topological vector space extends to X, then (X,S) sat­

isfies a property relating to the simultaneous order-preserv­

ing extension of the bounded continuous pseudometrics on S. 

Section 2 introduces various related 'Dugundji-type' 

extension properties. Results are given showing the rela­

tionship of these properties to various concepts involving 

the simultaneous linear extension of functions. Section 3 

consists of examples. 

Section 1 

The Arens-Eells Embedding Theorem [2] states that every 

metric space (X,d) can be embedded isometrically as a closed, 

linearly independent subset of a normed linear space. 

Michael's proof [12] involves choosing a metric space (Y,d) 

containing (X,d) and with a point Yo E Y-X. Lip(Y) = 

{f: Y ~ R: f(y ) = 0 and for some K > 0, If(x) - f(y) I < 
a 

K d(x,y) for all x,y E y}. With Ilf II equal to the infimum 

of the K's that work, Lip(Y) becomes a Banach space, and its 

dual E is also a Banach space. The map h: X ~ E is defined 

by h(x) (f) = f(x) for all f E Lip(Y). It is then shown that 

h is an isometry and if xl,···,x are distinct elements of X,n 
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then {h(x ) , ••• ,h(x )} forms a linearly independent set in
l n 

E. If d is a pseudometric rather than a metric, the follow­

ing modifications must be made. Let (Y,d) be a pseudometric 

space containing X with Yo E Y-X such that d(yo'x) > 0 for 

all x E X. Let (Y*,d*) be the metric space formed from (Y,d) 

in the usual way. Observe that Yo is not identified with any 

point of X. Let E be the dual of Lip(Y*) and h be defined 

as above. Then h is still an isometry but not necessarily 

1-1, that is h(x) = h(y) iff d(x,y) = O. If xl,···,x are n 

elements of X such that d(x. ,x.) > 0 for i ~ j, then 
1 J 

{h(x ) , ••• h(x )} forms a linearly independent set in E.
l n 

For the remainder of the paper, S will denote a subspace 

of a topological space X. No separation axioms will be 

assumed unLess stated. All functions and pseudometrics will 

be continuous. We use the abbreviation l.c·.s. to refer to a 

locally convex topological vector space. Recall that X is 

P-embedded in X if every pseudometric on S can be extended 

to a pseudometric on X. The following facts are known: 

(a) S is P-embedded in X iff every bounded pseudometric on 

S extends to a pseudornetric on X ([1], p. 178); (S) S is 

P-embedded in X iff every function from S to a Frechet space 

(complete metrizable l.c.s.) extends to X ([1], p. 227); (y) 

X is collectionwise normal iff every closed subset is P-em­

bedded ([1], p. 189); (0) If uX exists and has non-measurable 

cardinal, then X is P-ernbedded in uX ([1], p. 187). P*(x) 

will denote the collection of bounded pseudornetrics on X. 

If 0 is a collection of bounded pseudornetrics on S a func­

tion ~: 0 + P*(X) will be called an order-preserving extender 

if (1) ~(d) is an extension of d for all d E 0, and (2) if 
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Theorem 1. Let (X,S) have the property that every 

function from S to a complete l.c.s. extends to X. Then 

there exists an order-preserving extender from ?*(S) to 

7->* (X) • 

Lemma. Let X be a point not in S. There exists a o 

family 0 = {d*: d E ?*(S)} of pseudometrics on Y = S u {x }o 

such that d* extends d and d ~ e implies d* < e*. 

Proof. For d E ?*(S), let M = sup{d(x,y): x,y E S} and 

define d*(x,x ) = M for all xES. 
o 

To prove the theorem, observe that the identically zero 

pseudometric on S will be mapped to the identically zero 

pseudometric on X, so we will assume it is excluded from 

7->*(S). Let Y and 0 be as in the Lemma. For each d E 7->*(S) , 

let LiPd denote Lip(Y*), where y* is the metric space associ­

ated with (Y,d*). Let Ed denote its dual and h the map of
d 

Michael from (S,d) into Ed. Let B denote the closed spand 

of hd(S). Suppose d < e. We will define a linear norm-

ddecreasing mapping ge from Be to B such that the diagram
d 

below commutes (where i is the inclusion map) : 

(S,d) 

i h e 
(S,e) > Be 

. d (h ( )) h () d b h d. 11Def1ne ge e x d x an 0 serve t at ge 1S a we ­

defined map from he(S) into B Extend this map linearly tod . 

the span of he(S) in Be. The fact that this extension is 
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well-defined follows from the fact that h takes finite sets e 

of points in (S,e) (with distinct pairs of points having 

positive distance) to a linearly independent set in Be. We 

now have g~: span he(S) + Bd and we claim that g~ is a norm­

decreasing (and hence uniformly continuous) map. This follows 

from the fact that the unit ball of LiPd is contained in the 

d
unit ball of LiPe. Since B is complete, we may extend ge tod 

d 
a norm-decreasing linear map ge: Be + B and the commutativityd 

of the above diagram is clear. 

Let L be the projective limit l~m g~Be' and observe [14] 

that L is a complete l.c.s. Let g: S + L be defined by 

g(x)d = hd(x), and let g* denote an extension of g to X. 

For each d E ~*(S), define cI>(d) (x,y) = II g*(x)d - g*(Y)d ll . 
Since h is an isometry, it is clear that cI>(d) extends d.d 

Let d ~ e, then <D(d) (x,y) II g~(g*(X))e - g~(g*(Y))ell 

II gd (g* (x) - g* (y) ) II < "g* (x) e - g* (y) e 1/ = <D (e) (x, y) . e e e 

Finally, define ~: ~*(S) to ~*(X) by ~(d) = ¢(d) A sup{d(x,y): 

x,y E S}. 

Using (a), (S), and the fact that the projective limit 

of a countable family of Banach spaces is a Frechet space, we 

have: 

Corollary. S is P-embedded in X iff there exists an 

order~preserving extender from any countable family of bounded 

pseudometrics on S to ~ *(X) • 

Lutzer and Przymusinski ([10], [11]) have obtained some 

results relating to the simultaneous extension of pseudo­

metrics. They showed that if S is PY-embedded in X, then 
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there exists a continuous extender from ?*(S) (the bounded 
y 

y-separable pseudometrics on S) to ?*(X) , where ?*(S) is re­
y 

garded as a subset of C*(S x S), with the sup norm topology. 

Section 2 

To understand how the properties mentioned in the theorem 

relate to other 'Dugundji type' extension properties, we will 

consider the following ernbeddings. If every function from S 

to a convex subset K of a l.c.s. L extends to X with values 

in K, we say S is D-embedded in X. If L is complete and K 

closed, S is D*-embedded in X. If the extension is only 

required to go into L (not necessarily complete) we say S is 

L-embedded in X, and if this holds for complete L, then S is 

CL-embedded in X. If the first property holds for K metriza­

ble, then S is M-embedded in X, and if the third property 

holds for L a normed linear space, then S is M*-embedded in 

X. The following relationships hold: 

/0*, 
D ~ L 
,J} ~ 

M ~M* 

>CL 
~ 

> p 
(*) 

The only implication that is not obvious is M* implies 

M. That is shown in Theorem 1 of [15], where M-ernbedding was 

introduced and extensively considered. This section will 

explore the inter-relationships among these ernbeddings and 

also attempt to clarify their relation to properties involv­

ing the simultaneous linear extension of functions. In 

Section 3 material developed in this section will be used to 

show that none of the implications (except M ~ M*) in the 

diagram (*) is reversible. 
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Proposition 1. The following are equivalent: 

(1) S is CL-embedded in X. 

(2) S is P-embedded in X and cIS is CL-embedded in X. 

(3) S is P-embedded in cIS and cIS is CL-embedded in X. 

Proof. 1) implies 2) implies 3) is obvious. To show 

that 3) implies 1) let f be a function from S to a complete 

l.c.s. L. It is clearly only necessary to lift f to 

cIS. L may be regarded as a closed subspace of a product 

TI{B : a E A} of Banach spaces. For each a, let f* denote an 
a a 

extension of Pa 0 f to cl S. Define f* from cIS to L by 

f*(x)a = f~(x). To see that f*(x) is in L, recall that 

f*(clS) c cl(f(S)) c L. 

In a similar fashion we obtain: 

Proposition 2. The following are equivalent: 

(1) S is D*-embedded in X; 

(2) S is P-embedded in X and cIS is D*-embedded in X; 

(3) S is P-embedded in clS and cIS is D*-embedded in X. 

Corollary. (1) If S is dense and P-embedded in x~ then 

S is D*-embedded in X. 

(2) If uX exists and has non-measurable cardinal~ then X is 

D*-embedded in ux. 

Proof· (1) is obvious. For (2), use fact (0) of Sec­

tion 1. 

The following proposition involves an embedding property 

that is between L- and CL-embedding. 

Proposition 3. If uX has non-measurable cardinal~ then 

every continuous function from X to a projective limit of 
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normed linear spaces (or metrizable l.c.s.) extends to uX. 

Proof. Let f be a function from X into L = lim gasEs' 

where each E is a normed linear space or each E is a 
a a 

metrizable l.c.s. Since X is M-erobedded in uX [15], each 

Pa	 0 f has a (unique) extension to f~: uX + Ea. Defining 

f*: uX + L by f*(x)a = f~(x) gives the result. 

For a topological space X and a l.c.s. L, C(X,L) will 

denote the set of all continuous functions from X to L. By 

a simultaneous linear extender (s.l.e.) from C(S,L) to 

C(X,L) we mean a linear function ~: C(S,L) + C(X,L) such that 

~(f) Is = f for all f E C(S,L). Note that we can further 

specialize this notion by requiring ~ to be continuous with 

respect to various topologies that can be placed on C(X,L). 

For example, this space can be equipped with the topology of 

uniform convergence (Cu(X,L)), the topology of compact con­

vergence (Cc(X,L)), or the topology of pointwise convergence 

(Cp(X,L)). Thus a s.l.e. ~: Cu(S,L) + Cu(X,L) would be a 

s.l.e. that is continuous with respect to the topology of 

uniform convergence on both function spaces. The following 

theorem relates the embedding concepts D, D*, L, and CL to 

the s.l.e. concept just introduced. 

Theorem 2. Let S be a subspace of a topological space 

X.
 

a) S is D-embedded in X iff given a l.c.s. L3 there exists a
 

s.l.e. ~: Cu(S,L) + Cu(X,L) such that ~(f) is contained 

in the convex hull of f(S) for all f E C(S,L). 

b)	 S is D*-embedded in X iff given a complete l.c.s. L3 there 

exists a s.l.e. ~: Cu(S,L) + Cu(X,L) such that ~(f) is 
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contained in the closed convex hull of f(S) for all 

f E C(S,L). 

c) S is L-embedded in X iff given a l.c.s. L~ there exists a 

s.l.e. ~: Cp(S,L) + Cp(X,L) such that ~(f) is contained 

in the span of f(S) for all f E C(S,L). 

d)	 S is CL-embedded in X iff given a complete l.c.s. L~ 

there exists a s.l.e. ~: C(S,L) + C(X,L) such that ~(f) is 

contained in the closed span of f(S) for all f E C(S,L). 

Proof. Observe that in each case sufficiency is clear. 

To show necessity, let L be a l.c.s. (complete for proof of 

b) and d) and let E be a product of copies L of L, one forf 

each f E C(S,L). Let ¢ be the canonical map from S into E 

and let ¢* denote an extension of ¢ to X. In the case of a) 

(b), we assume ¢*(X) is contained in the (closed) convex 

hull of ¢ (S). In the case of c) (d), we assume ¢* (X) is 

contained in the (closed) span of ¢(S). Defining ~(f) (x) 

¢(x)f' one checks that all properties except the continuity 

of ~ are satisfied. Since there is no continuity requirement 

in d), the proof of d) is completed. 

To show the continuity of ~ in a), fix f E C(S,L),o 

P a seminorm on L, and £ > O. Assume p(f(x) fo(x)) < £ 

for all xES. Fix x E X and assume ¢*(x) L~ la.¢(x.)o 0 1= 1 1 

is a convex combination of elements in ¢(S). Then p(~(f) (x )o 

~(f ) (x )) = P(L a.f(x.) - L a.f (x.)) < L a.p(f(x.) ­o 0 1 1 101 - 1 1 

fo(x i ))<£· 

To	 show the continuity of ~ in b), fix f ' p, and £ > 0 o 

as above and assume p(f(x) - fo(x)) < £/3 for all xES. 

Fix X E X. Since ¢*(x ) is in the closed convex hull of o o 

¢(S) and since E has the product topology, there exists a 
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convex combination I a.¢(x.) of elements of ¢(S) such that 
1 1 

p(I a.f(x.) - ¢*(x )f) < E/3 and p(I a.f (x.) - ¢*(x)f ) < 
1 1 0 101 00 

E/3. Hence p(\1'(f) (x ) - \1'(f ) (x )) ~ p(\1'(f) (x ) ­o o o o

I a.f(x.)) + p(I a.f(x.) - I a.f (x.)) + p(\ a.f (x.) ­
1 1 1 1 101 L 101 

\1' (f ) (x )) < E. o o
 

To show the continuity of \1' in c), fix f ' p, and
 o 

E > 0 as above and fix x E X. We will find a finite subset o 

F of Sand 0 > 0 such that p(f(x) - fo(x)) < 0 for x E F 

impI i e s p ( \1' ( f) (x ) - \1' (f ) (x )) < E. Now ¢* (x ) = I r: 1a . ¢ (x . ) , o 0 0 0 1= 1 1 

where xi E S for i l,···,n. If ¢*(x ) = 0, choose F to be o 

some singleton subset of S and choose 0 = 1. If ¢*(x ) ~ 0,o 

we assume a. ~ 0 and x. ~ x. for i ~ j. Let F = {x.: i 1,
1 1 ] 1 

E 

···,n} and 0 Ila.l. Then if p(f(x.) f (x.)) < 0, we have 
1 101 

p(\1'(f) (x ) - \1'(f ) (x )) = p(I a i (f(xi ) - fo(x i )) < E. o o o 

Corollary 1. aJ If S is L-embedded in a T space X~
3i 

then S is closed in X. 

bJ If X is a T non-realcompact space~ then X is never
3i 

L-embedded in ux. 

Proof. b) follows from a). To show a), suppose S is 

L-embedded in X and let X E cIS - S. By c) of Theorem 2,o 

there exists a s.l.e. \1': C (S) + C (X). Fix'lS' F a finite p p 

subset of Sand E > O. Choose a continuous function f on X 

such that f(x ) I + E and f(x) = I for all x E F. This o

leads to a contradiction. 

Note that the same trick will work to show there exists 

no s.l.e. from Cc(X) to Cc(UX). Now let X be a T 3! non­

realcompact space such that uX has non-measurable cardinality. 
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By the corollary to Proposition 2, we see that X is D*-embed­

ded in uX, but by Corollary 1 above, X is not L-embedded in 

ux. Proposition 3 shows us that (UX,X) actually satisfies 

an embedding property between L- and CL-embedding. Let us 

now relate our embeddings to the order-preserving extension 

of real-valued continuous functions. 

An extender ~ from C(S) to C(X) is a (strict) monotone 

extender if f ~ g implies ~(f) ~ ~(g) (f < g implies ~(f) < 

~(g)). The proof of the following corollary is based on the 

same idea as the proof of Theorem 2. 

Corollary 2. If S is D*-embedded (D-embedded) in X~ 

there exists a simultaneous linear (strict) monotone ex­

tender from Cu(S) to Cu(X). 

We	 now prove a proposition closely related to Theorem 

2. It answers a question of Dave Lutzer. Let 5 be a 

countable collection of continuous functions on S with values 

in a Banach space B, and let 5* denote the span of 5 in 

C(S,B) . 

Proposition 4. Let S be a subspace of a topological 

space X. 

aJ S is P-embedded in X iff given any Banach space B and any 

5 as above~ there exists a s.l.e. ~: 5* ~ C(X,B) such that 

~(f) is contained in the closed convex hull of f(S) for 

all f E 5* and such that ~ is continuous with respect to 

the topology u. 

bJ	 S is M-embedded in X iff given any countable collection 

5 of functions from S into a normed linear space L~ there 
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exists a simultaneous extender ~: 5 + C(X,L) such that 

~(f) is contained in the convex hull of f(S) for all f E 5 

and such that ~ is continuous when both spaces have the 

u topology or both have the p topology. 

Proof. Sufficiency in a) is clear. To show necessity, 
A 

let 5 denote all linear combinations of functions in 5 with 

rational coefficients. Then 5 is countable and we can form 
A 

the product E of copies B of B, one for each f E s. Since
f 

E is a Frechet space, the canonical map ¢ from S into E ex­

tends to ¢* on X with ¢*(X) contained in the closed convex 

hull of ¢ (S), ([1], p. 277). Defining ~ (f) (x) = ¢* (x) f' we 
A 

get an extender from 5 to C (X,B). Considering 5 as a subset 

of Cu(S,B) we see (similar to the proof of b) Theorem 2) 

that ~ is uniformly continuous. Hence ~ can be lifted to 
A 

the closure of 5 (and this contains 5*). Hence we get a 

~*: 5* + C (X,B). One checks that ~* is a linear extender u u 

and ~*(f) (X) is contained in the closed convex hull of f(S) 

for all f E 5*. 

To prove b), observe that sufficiency is clear. To 

show necessity, form the product E of copies L one for eachf , 

f E 5 and let ¢ be the canonical map from S into E. Note 

that E is a metrizable l.c.s. By [15] there exists an ex­

tension ¢* of ¢ to X with ¢*(X) contained in the convex hull 

of ¢(S). The proof is now similar to that of Theorem 2. 

Note that in a) ~ cannot always be assumed to be con­

tinuous with respect to the topologies of compact or point-

wise convergence, as Heath has shown (p. 28 [9]) that there 

exists a countable subset 5 of C*(Q) such that no extender 
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(linear Qr nQt) frQm 5 tQ C*(X), where X is the Michael line, 

is cQntinuQus with respect tQ either Qf these tQpQlQgies. 

Of CQurse, this implies that Q is nQt M-embedded in X, a 

fact we will Qbserve in SectiQn 3. 

We nQW relate the prQperty Qf D*-embedding tQ a simul­

taneQus extensiQn prQperty cQnsidered in [4]. van DQuwen 

defines a space X tQ be D*, where c > 1 is a real number, ifc _ 

fQr each clQsed subspace F Qf X, there is a s.l.e. ~ frQm 

C*(F) tQ C*(X) such that II ~(f) II ~ c II f II fQr each f E C*(F). 

He shQWS (3.4, p. 304) that if X is a Di space, then X is 

hereditarily cQllectiQnwise nQrmal. 

By the prQQf methQd Qf TheQrem 2, we Qbtain: 

Proposition 5. If S is D*-embedded in X3 there exists 

a norm-preserving s.Z.e. from C*(S) to C*(X). 

Section 3 

Let us nQW use the results in SectiQn 2 tQ shQW that 

nQne Qf the implicatiQns (except M ~ M*) in the diagram (*) 

are reversible. 

First, let X be a T3! nQn-realcQmpact space such that 

vX has nQn-measurable cardinality. By the CQmments fQlIQw­

ing CQrQllary 1 Qf TheQrem 2, we knQw.that X is D*-embedded 

(and hence CL-embedded) in UX, but it is nQt L-embedded. 

Since it is knQwn [15], that X is M-embedded in ux, this 

shQWS the nQn-reversibility Qf the implicatiQns L ~ CL, 

L ~ M*, and D ~ D*. 

Heath, Lutzer, and ZenQr [7] have shQwn that there is 

nQ s.l.e. frQm Cp(SN - N) tQ Cp(SN). TheQrem 2 (c) then 

implies that SN - N is nQt L-embedded in SN. Since it was 
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shown in [15] that every embedding of a compact space in a 

T3! space is an M-err~edding, this produces another example 

of an M-embedded, non-L-embedded subspace. 

Yet another example is essentia~ly contained in Pro­

position 6.1 of [13]. Let H be a Hilbert space whose ortho­

normal dimension is the continum and let S be the unit sphere

of H in the weak topology. If we let X be the Cartesian 

product of continum many closed unit intervals, then Michael 

shows that S is homeomorphic to a closed, convex subset of 

X. It is known that X is s~parable, and Michael shows that 

H with the weak topology is not separable. Let i: S + H be 

the identity map, where both Sand H have the weak topology. 

Observe that H with the weak topology is a l.c.s. If i 

extended to a continuous function i* on X, then we would have 

S c i*{X} c H, which would imply that H is separable, a con­

tradiction. Since S is compact, this produces another example

of an M-embedded, non-L-embedded subspace. 

Each of the above examples also shows the non-reversi­

bility of the implication D ~ M. Now let X be any compact 

Hausdorff, non-hereditarily collectionwise normal space. 

By Proposition 5 and the comments directly preceding it, we 

know that X must contain a closed subset F that is not D*­

embedded in X. This produces an example of an M-embedded, 

non-D*-embedded subspace. 

An example due to van Douwen «(4], p. 3ll) will be used 

to give an example of an L-embedded, non-D-embedded subspace.

Let Ai be a discrete space of cardinality Ki and let Ci = Ai 

{p.} be the one-point compactification of A. for i 0,1. 
~ 1 

Let X = Co XCI'S = ({po} x Cl } U (Co x {PI}} and let f be 
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a function from S into a l.c.s. L. Define an extension f* 

on X - S by f*(xo'x l ) = f(xo,Pl) + f(po'x l ) - f(po,Pl). One 

can show that f* is continuous, hence S is L-embedded in X. 

It follows from van Douwen's results and Proposition 5 that 

S is not D*-embedded (and hence not D-ernbedded) in X. This 

shows the non-reversibility of the implications D 9 Land 

D* ~ CL. 

It remains to show the non-reversibility of M ~ P and 

CL 9 P. Let X denote the Michael line with Q denoting the 

rationals. In [15], it is shown that Q is P-embedded in X 

but not M-embedded. The author would like to express her 

appreciation to E. Michael for communicating the following 

proof that Q is not CL-ernbedded in X. 

To show this, let P denote the irrationals with their 

usual topology, and define f: Q x P + R by f(x,y) = (y_x)-l. 

We first show that there is no continuous extension of f to 

X x P. Suppose g were such an extension. For n E N, let 

H {x E X-Q: g(x,y) < n whenever Ix-YI < lin}. One can n 

show that X - Q U{Hn : n E N}. since Q is not a Go in X, 

we must have H n Q ~ fl for some k.k 

Pick x E Hk n Q and then pick y E P such that 0 < y-x < 

l/2k. Then g(x,y) > 2k. Since g is continuous, there exist 

neighborhoods u of x and V of y such that (x' ,y') E U x V 

implies g(x',y') > k. Since x E Hk , we can choose x' E H n Uk 

such that Ix-x'i < l/2k. Hence g(x',y) > k. But Ix'-YI < 

lxi-xi + Ix-YI < 11k. Therefore, since x' E Hk , we must have 

g(x',y) < k, a contradiction. 

Now let L Cc(P) and define h: Q + L by h(x) (y) = 

f(x,y). One can show that h is continuous and L is complete. 



279 TOPOLOGY PROCEEDINGS Volume 2 1977 

Suppose h extended to h*: X + L. Defining g: X x P + R by 

g(x,y) = h*(x) (y) would give a continuous extension of f, 

contrary to the above result. 

The	 author would like to thank the referee for various 

suggestions leading to a clearer presentation of the results 

in this paper. 

Comments and Open Questions 

1.	 Is the converse of Theorem 1 true? 

2.	 If not, find a P-embedded subset that fails to satisfy 

the conclusion of Theorem 1. 

3.	 From rheorem 2 it is clear that if S is D-embedded in X, 

then there exists a s.l.e. from Cu(S) to Cu(X) and from 

Cp(S) to Cp(X). Must there exist a s.l.e. from Cc(S) to 

Cc(X)? 

4.	 Give characterizations (similar to those known for P-

and M-embedding) for the other embeddings introduced in 

Section 2. 
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