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Research Announcement 

A COMPACT NONMETRIZABLE SPACE P
 

SUCH THAT p2IS COMPLETELY NORMAL
 

Peter Nyiko8 

In 1948, M. Katetov showed [2] that if P is a compact 

space such that P x P x P is completely normal, then P is 

metrizable. [Throughout this announcement, the word "space" 

will always refer to a Hausdorff space.] KatAtov then re­

marked that he did not know whether complete normality of 

P x P was enough to give metrizability. I will now give an 

example of a compact, nonmetrizable space P whose square, 

assuming Martin's axiom and the negation of the continuum 

hypothesis [abbreviated MA + -, CH] is completely normal. I 

will also indicate why a linaive" example of such a space, if 

it exists, will be hard to come by. 

1.	 The Example 

Let I = [0,1]. Let A E I be of cardinality ~l. Replace 

each a of A by two points, a+ and a , with the convention 

that a < a+j otherwise we keep the usual order of all of 

(I-A) U A+ U A- = P. Since P is complete in the order top6l­

ogy, it is a compact space, and nonmetrizable because it does 

not have a countable base: every base must include an open 

set with a+ as its least element, and one with a- as its 

greatest, for all a E A. 

2.	 Preliminary Lemmas 

The following oft-used lemma is utilized in the proof: 

Lemma 1. Let Hand K be subsets of a space X. Hand 
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K can be put into disjoint open subsets whenever there exist 

countable collections of open sets Un and V so that n 

H C U:=l Un" K c U:=l Vn and Un n K = <p and Vn n H = <p for 

al l n. 

We also use: 

Lemma 2. [ 3 ] [MA + -, CH] Let Y be a metri c s pa'c e 0 f 

cardinality ~l. Every subset of Y is an Fa. 

We also note that (A+)2 is homeomorphic to a subspace 

of the Sorgenfrey plane. 

Lemma 3. [1] [MA + ,CH] If X is a subspace of the 

Sorgenfrey plane., of cardinal ~l" then X is normal. 

2Lemma 4. The space P 

Lindelof. 

2Now, although p is the union of the perfectly normal 

(under MA + 'CH) subspaces p2 - (A+ U A-)2, (A+)2, (A-)2, 

A+ x A-, and A- x A+, the whole space is not perfectly nor­

mal; for example, the diagonal is not a Go. But under 

MA + 1CH it is completely normal. 

3. Outline of the Proof 
2 ­Let Hand K be subsets of P such that H n K = <p, 

H n K = <p. The objective is to find countable collections 

{Un}~=l and {Vn}~=l of open subsets of p2 as in Lemma 1. 

2 + . - 2Using Lemma 4 and regularity of P , we can get H - (A U A ) 

into a countable union of open sets whose closure misses K. 

By various symmetry arguments, the proof then boils down to 

showing that there exist countably many open sets whose 

closures miss K and whose union contains H n (A+)2 = HI. 
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With the help of Lemma 3, we can get H into an openl 

subset of p 2 whose closure misses K n (A+)2. We will choose 

all our open sets to be contained in this one. By Lemma 2 

[there is a coarser metric topology on (A+)2] we can let 

H = U~=l F	 where each F is closed in (A+)2, and eachl n n 

x E F has a basic first-quadrant neighborhood whose closure n 

misses K and which is a square lin on a side. For each F n 
2 we cut up p into countably many clopen squares <lin on a 

side. It is enough to take care of the points of F which 
n 

lie in anyone square S. Attach the basic lin-neighborhoods 

to these points, trimming off the parts sticking out of S. 

The only possible points of K in the closure of the resulting 

open set lie on a graph which can be thought of as a monotone 

function. Moreover, points of K can only lie along straight 

line segments of the graph, of which there are countably many. 

Let En stand for the one-sided limit points of F n S n 
OO 

on the graph. We use Lemma 2 again to show F n S = U C n n=l nm 

where each C is closed in the relative EucLidean topology of 
nm 

En U (F n S). If we attach the basic lin-neighborhoods to n 

the points of C and intersect with S, it turns out that the 
nm 

closure of the resulting set misses K. 

~o ~1 
4. What Happens if 2 _c 2 

The	 space p2 is not completely normal in any model of 

KO Kl 
set theory where 2 < 2 . This is because p 

2 has the un­

countable discrete subspace {(a+,a-) la E A} and is separable, 

and it is well known that: 

Lemma 5. 

separabLe, compLeteLy normaL space is countabLe. 
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This lemma quickly involves us in a famous pair of prob­

lems of general topology: whether there exists an S-space 

(a regular, hereditarily separable space which is not heredi­

tarily Lindelof) or an L-space (a regula~, hereditarily Linde­

lof space which is not hereditarily separable). Such spaces 

have been constructed in some models of set theory; but, in 

particular, no one has constructed such spaces assuming only 

2 ~O < 2 ~l • 

But from Lemma 5 it is only a short step to: 

~o ~l
Theorem [2 < 2 ] If X is a compact~ nonmetrizable 

space such that X2 is completely normal~ then at least one 

of the following is true: 

1. X is an L-space 

2.	 X2 is an S-space
 

2
3. X contains both an S-space and an L-space. 

If we combine this theorem with the result that MA + ICH 

implies every compact space of countable spread is heredi­

tarily separable, we see that a "naive" example (one whose 

basic cardinal invariants like density, spread, and heredi­

tary Lindelof degree do not vary with the model of ZFC used) 

would have a hereditarily separable squa~e which is not 

hereditarily Lindelof (because of not having a Go-diagonal). 

Such a compact space has not yet been constructed in any 

model of set theory! 

Even if we restrict ourselves to 2~O < 2~l, we are out 

of reasonable candidates: Mary Ellen Rudin showed, after I 

came up with these results, that the square of a Souslin 

line is never completely normal. 
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