TOPOLOGY PROCEEDINGS

Volume 2, 1977

Pages 631-642

http://topology.auburn.edu/tp/

BOXES OF COMPACT ORDINALS

by Scott W. Williams

Topology Proceedings

Web: http://topology.auburn.edu/tp/

Mail: Topology Proceedings

Department of Mathematics & Statistics Auburn University, Alabama 36849, USA

 $\textbf{E-mail:} \quad topolog@auburn.edu$

ISSN: 0146-4124

COPYRIGHT © by Topology Proceedings. All rights reserved.

BOXES OF COMPACT ORDINALS

Scott W. Williams

If $\{X_n\colon n\in\omega\}$ is a family of spaces, then $\square_{n\in\omega}X_n$, called the box product of those spaces, denotes the cartesian product of the sets with the topology generated by all sets of the form $\Pi_{n\in\omega}G_n$, where each G_n need only be open in the factor space X_n . If $X_n=X\ \forall\ n\in\omega$, we denote $\square_{n\in\omega}X_n$ by $\square^\omega X$.

M. E. Rudin [5] and K. Kunen [3 and 6, pg. 58] have shown that CH implies $\square_{n\in\omega}(\lambda_n+1)$ is paracompact for every countable collection of ordinals $\{\lambda_n\colon n\in\omega\}$. At the 1976 Auburn University Topology Conference I demonstrated [7] that the paracompactness of $\square^\omega(\omega+1)$ is implied by the existence of a k-scale in $^\omega\omega$, a set-theoretic axiom which is a consequence of, but not equivalent to, Martin's Axiom, and hence CH. In addition, I proved $\square^\omega(\omega_1+1)$ is paracompact iff $\square^\omega(\alpha+1)$ is paracompact \forall countable ordinals α . If this is coupled with E. van Douwen's (\exists a k-scale in $^\omega\omega$) \Rightarrow $_{n\in\omega}X_n$ is paracompact for all collections $\{X_n\colon n\in\omega\}$ of compact metrizable spaces [1], we have $\square^\omega(\omega_1+1)$ is paracompact if \exists a k-scale in $^\omega\omega$. However, none of the proofs generalize to higher ordinals $(\square^\omega(\omega_2+1)$, for example). We conjecture:

If $\Box^{\omega}(\omega+1)$ is paracompact, then $\Box^{\omega}(\lambda+1)$ is paracompact \forall ordinals $\lambda.^1$

It is unknown whether it is consistent for $\square^{\omega}(\omega+1)$ not to be paracompact; however, I compact spaces X_n such that $\bigsqcup_{n\in\omega}X_n$ is not normal. Moreover, irrationals $x(\square^{\omega}(\omega+1))$ is not normal [6, pg. 58].

Toward this conjecture we show:

Suppose λ is an ordinal for which $\bigsqcup_{n\in\omega}(\lambda_n+1)$ is paracompact whenever $\lambda_n<\lambda\ \forall\ n\in\omega$, then $\bigsqcup^\omega(\lambda+1)$ if either of the following holds:

- (1) $cf(\lambda) \neq \omega$ (Theorem 1).
- (2) cf(λ) = ω and \exists a k-scale in ${}^{\omega}\omega$ (Theorem 2). Now suppose $\{X_n: n \in \omega\}$ is a family of sets and for each $f \in \Pi_{n \in \omega} X_n,$

$$\begin{split} \mathtt{E}(\mathtt{f}) &= \{ \mathtt{g} \in \Pi_{\mathsf{n} \in \omega} \mathtt{X}_{\mathtt{n}} \colon \ (\exists \ \mathtt{m} \in \omega) \, \mathtt{n} > \mathtt{m} \Rightarrow \mathtt{g}(\mathtt{n}) = \mathtt{f}(\mathtt{n}) \, \}, \\ \mathtt{then} \ \{ \mathtt{E}(\mathtt{f}) \colon \ \mathtt{f} \in \Pi_{\mathsf{n} \in \omega} \mathtt{X}_{\mathtt{n}} \} \ \ \mathsf{forms} \ \ \mathtt{a} \ \ \mathsf{partition} \ \ \mathsf{of} \ \ \Pi_{\mathsf{n} \in \omega} \mathtt{X}_{\mathtt{n}} \ \ \mathsf{and} \ \ \mathsf{the} \\ \mathtt{resultant} \ \ \mathsf{quotient} \ \ \mathsf{set} \ \ \mathsf{is} \ \ \mathsf{denoted} \ \ \mathsf{by} \ \ \forall_{\mathsf{n} \in \omega} \mathtt{X}_{\mathtt{n}}. \quad \mathsf{If} \ \ \mathsf{S} \subseteq \Pi_{\mathsf{n} \in \omega} \mathtt{X}_{\mathtt{n}}, \\ \mathtt{we} \ \ \mathsf{let} \ \ \mathsf{E}(\mathtt{S}) \ \ \mathsf{denote} \ \ \mathsf{its} \ \ \mathsf{image} \ \ \mathsf{in} \ \ \forall_{\mathsf{n} \in \omega} \mathtt{X}_{\mathtt{n}}. \end{split}$$

Lemma (Kunen [3 and 6, pg. 58]). Suppose X_n is a compact Hausdorff space for each $n \in \omega$ and $\nabla_{n \in \omega} X_n$ has the quotient topology induced by $\sqcup_{n \in \omega} X_n$, then

- (i) G_{δ} -sets in $\nabla_{\mathbf{n}\in\omega}\mathbf{X}_{\mathbf{n}}$ are open
- (ii) $\square_{n \in \omega} x_n$ is paracompact iff $\nabla_{n \in \omega} x_n$ is paracompact 2
- (iii) Every open cover of $\nabla_{\mathbf{n}\in\omega}\mathbf{X}_{\mathbf{n}}$ has a subcover of cardinality $\leq \mathbf{c}$ (the cardinality of the continuum) whenever $\mathbf{X}_{\mathbf{n}}$ is scattered \forall $\mathbf{n}\in\omega$.

For A, B \in \mathbf{P} (ω) define A \leq B if A - B is finite; A \equiv B if A \leq B and B \leq A. Observe that \equiv is an equivalence relation on \mathbf{P} (ω). Suppose λ is an ordinal and f \in $^{\omega}\lambda$, for each A \in \mathbf{P} (ω), we define in $\nabla^{\omega}(\lambda + 1)$, $\langle A, f \rangle = E(\Pi_{\mathbf{n} \in \omega} \mathbf{A_f}(\mathbf{n}))$, where

 $^{^2\}text{With (i)} \ \nabla_{n\in\omega} x_n$ is paracompact iff every open cover has a pairwise disjoint clopen refinement.

$$A_{f}(n) = \begin{cases} [f(n) + 1, \lambda] & \text{if } n \in A \\ [0, f(n)] & \text{if } n \notin A. \end{cases}$$

 $\{ \langle A,f \rangle : A \in \textbf{P}(\omega) \} \text{ forms a clopen partition of } \nabla^{\omega}(\lambda + 1)$ since $A \equiv B \text{ iff } \langle A,f \rangle \cap \langle B,f \rangle \neq \emptyset.$

Theorem 1. Suppose λ is an ordinal with $\mathrm{cf}(\lambda) \neq \omega$, then for $\square^{\omega}(\lambda+1)$ to be paracompact it is necessary and sufficient that $\square^{\omega}(\alpha+1)$ be paracompact $\forall \; \alpha < \lambda$.

Proof. Necessity is obvious so we prove sufficiency only.

Without loss of generality, we assume λ is the supremum of an increasing sequence $\{n_{\alpha}: \alpha < cf(\lambda)\}$. Let R be an open cover of $\nabla^{\omega}(\lambda + 1)$. For each $\tau < \omega_1$ and $d \in {}^{\tau}c$ we construct inductively V(d), W(d), $\theta(d)$, and A(d) to satisfy:

- (1) V(d) and W(d) are clopen subsets of $\nabla^{\omega}(\lambda + 1)$, $\exists \ U \in R \ni V(d) \subseteq U$, V(d) \cup W(d) \subseteq W(d $\upharpoonright \sigma$) $\forall \ \sigma < \tau$, and if $\sigma < \tau$ is a limit ordinal, then W(d $\upharpoonright \sigma$) = $\bigcap_{\rho < \sigma}$ W(d $\upharpoonright \rho$).
- (2) If $\sigma \leq \tau$ is an odd ordinal³, then $\{V(e): dom(e) \leq \sigma\} \cup \{W(e): dom(e) = \sigma\}$ is a pairwise-disjoint covering of $\nabla^{\omega}(\lambda + 1)$.
- (3) A(d) is an infinite subset of ω and if $\sigma \leq \tau$ is a non-limit ordinal, then A(d \(\Gamma \) \(\Gamma
- (4) If $E(x) \in W(d)$ and $\phi < A \leq A(d \upharpoonright \sigma) \ \forall \ \sigma \leq \tau$, then $E(\{y: x(n) \leq y(n) \leq \lambda \text{ if } n \in A, \ y(n) = x(n) \text{ if } n \not\in A\}) \subseteq W(d)$.
- (5) $\theta(d) \in {}^{\omega}\lambda$ is a constant function with values in $\{n_{\alpha}: \alpha < cf(\lambda)\}$ and if $\sigma \leq \tau$ is even, then $\theta(d \upharpoonright \sigma) (0) > \theta(d \upharpoonright \rho) (0) \ \forall \ \rho < \sigma.$

 $^{^3\}sigma$ is an odd ordinal when $\sigma=\sigma_0+2n+1$, where $\sigma_0=0$ or is a limit ordinal and $n\in\omega$. If σ is not odd it is even.

(6) If $\sigma \leq \tau$ is odd, then $W(d \upharpoonright \sigma) \leq \langle A(d \upharpoonright \sigma), \theta(d \upharpoonright \sigma) \rangle$,

(7) If $\sigma \leq \tau$ is a non-limit even ordinal and $\rho = \sigma - 1$, then \exists a clopen subset $G(d \upharpoonright \sigma)$ of $\nabla_{n \notin A(d \upharpoonright \rho)} (\theta (d \upharpoonright \sigma) (n) + 1)$ such that

 $V(d \upharpoonright \sigma) = W(d \upharpoonright \sigma) \cap \langle A(d \upharpoonright \rho), \theta(d \upharpoonright \sigma) \rangle \quad and$ $W(d \upharpoonright \sigma) = \{E(x) \in W(d \upharpoonright \rho) : E(x \upharpoonright \omega - A(d \upharpoonright \rho)) \in G(d \upharpoonright \sigma)\}.$

Now suppose our objects V(d), W(d), $\theta(d)$, and A(d) have been constructed to satisfy (1) through (7) $\forall d \in {}^{T}c \quad \forall \tau < \omega_{1}$. If $E(x) \not\in U\{V(t \upharpoonright \tau): t \in {}^{\omega_{1}}c, \ \tau < \omega_{1}\}$ then by (1) and (2) we may find for each $\tau < \omega_{1}$, $d_{\tau} \in {}^{T}c$ such that $E(x) \in W(d_{\tau})$. Again from (1) and (2), if $\sigma < \tau$ is odd and $d \in {}^{\sigma}c$ such that $d \neq d_{\tau} \upharpoonright \sigma$, then $E(x) \not\in W(d)$; therefore, $\sigma < \tau \Rightarrow d_{\sigma} = d_{\tau} \upharpoonright \sigma$. From (5) we may find the first even ordinal $\rho < \omega_{1}$ such that for every n,

 $x(n) > \theta(d_{\rho})(0) \Rightarrow x(n) \ge \sup_{\tau \le \omega_{\eta}} \theta(d_{\tau})(0)$.

From (6) $\exists y \in \square^{\omega}(\lambda + 1) \ni E(y) = E(x) \text{ and}$ $A(d_{0+1}) = \{n: y(n) > \theta(d_{0+1})(n)\}.$

From (7) E(y) \in V(d_{p+2}), a contradiction. Therefore, $\{V(t \upharpoonright \tau): \ t \in \ ^{\omega 1}c, \ \tau \ < \ \omega_1 \}$

is a cover of $\triangledown^\omega(\lambda+1)$ and we are done, so we should begin our construction.

Let $A(\phi) = \omega$, $W(\phi) = \nabla^{\omega}(\lambda + 1)$, and α be the first ordinal such that $E(\Pi^{\omega}[n_{\alpha},\lambda])$ is contained in some $U \in R$. Let $\theta(\phi)(n) = n_{\alpha} \quad \forall \ n \in \omega \ \text{and} \ V(\phi) = \langle A(\phi), \theta(\phi) \rangle$.

Suppose for an ordinal $\rho<\omega_1$ we have constructed V(d), W(d), $\theta(d)$, and A(d) to satisfy (1) through (7) \forall d \in $^{\text{T}}$ c \forall $\tau<\rho$. Our construction at ρ needs three cases:

Case 1. p is an odd ordinal

Let τ = ρ - 1 and θ (e) = θ (d) if $e \in {}^{\rho}c$ and $e \upharpoonright \tau$ = d. Let

{A(e):
$$e \in {}^{\rho}c$$
, $e \mid \tau = d$ }

be a listing of exactly one element chosen from each equivalence class of elements of

{A:
$$\phi < A < A(d \uparrow \sigma), \sigma < \tau$$
 }.

For each e^{ξ} we let

$$W(e) = W(e \upharpoonright \tau) \cap \langle A(e), \theta(e) \rangle$$
.

If $d \in {}^T c$, then $W(d) \cap \langle \phi, \theta(d) \rangle$ is a clopen subset of $E(\Pi^{\omega}[0, \theta(d)(0)])$; therefore, by the lemma (ii) and (iii) we may find a pairwise-disjoint clopen refinement of R

 $\{V(e):\ e\in {}^{\rho}c,\ e\ \upharpoonright\tau=d\}\ \ \text{whose union is }W(d)\ \ \cap\ \ \left\langle \, \varphi,\ \theta(d)\,\right\rangle \;.$ Clearly (1) through (7) are satisfied.

Case 2. ρ is a non-limit even ordinal.

Let $\tau = \rho - 1$ and A(e) = A(d) if $e \in {}^{\rho}c$ and $e \upharpoonright \tau = d$. If $d \in {}^{\tau}c$ and $W(d) = \phi$, we let $W(e) = V(e) = \phi$ and

$$\theta$$
 (e) (n) = n_{α} if θ (d) (n) = $n_{\alpha-1}$ \forall $n \in \omega$

If $d \in {}^{\tau}c$ and $W(d) \neq \emptyset$, let

$$Y^*(d) = \{q: q^{-1}(\lambda) = A(d), E(q) \in W(d)\}.$$

We will wish to cover Y*(d) by

$$U\{W(e): e \mid \tau = d\}.$$

From (4), $Y(d) = \{g \upharpoonright \omega - A(d) : g \in Y^*(d)\} \neq \emptyset$.

In $\forall_{n \notin A(d)} (\theta(d)(n) + 1)$, let

 $R(d) = \{E(\Pi_{n \notin A(d)} U(n)) : E(\Pi_{n \in \omega} U(n)) \subseteq \text{some } U \in R,$

 $E(\Pi U(n)) \cap Y^*(d) \neq \emptyset$.

From (5) of the induction hypothesis and the lemma, (ii) and (iii), \exists a pairwise disjoint clopen refinement $\{G(\gamma): \gamma < c\}$ of R(d) whose union is E(Y(d)). If $e \in {}^{\rho}c$, $e \upharpoonright \tau = d$, $e(\tau) = \gamma$, then let

$$W(e) = \{E(x) \in W(d) : E(x \upharpoonright \omega - A(d)) \in G(\gamma) \}.$$

For each γ we may find $n_{\alpha(\gamma)} > \theta(d)(0)$ such that $\{E(x) \in W(d) : E(x \upharpoonright \omega - A(d)) \in G(\gamma) \text{ and } x(n) > n_{\alpha(\gamma)} \ \forall \text{ but finitely many } n \in A(d)\} \subseteq \text{some } U \in \mathbb{R}.$

Let θ (e)(n) = $n_{\alpha(\gamma)} \forall n \in \omega$ and V(e) = W(e) $\cap \langle A(d), \theta(e) \rangle$. Certainly (1) through (7) are satisfied.

Case 3. p is a limit ordinal.

If $e^{\xi} c$, let $A(e) = \omega$, $V(e) = \phi$, and find the first $\alpha < \omega_1 \ni n_\alpha > \theta (e \upharpoonright \tau) (0)$. $\forall \ \tau < \rho$. We choose $\theta (e) (n) = n_\alpha \forall \ n \in \omega$. To satisfy (1) through (7) we observe that (i) of the lemma allows

$$W(e) = \bigcap_{\tau < \rho} W(e \upharpoonright \tau)$$

to be clopen.

The proof to Theorem 1 is completed.

If $^{\omega}\omega$ is ordered by f < g if $\{n: g(n) \leq f(n)\} \equiv \phi$, then for an ordinal k, a k-scale is an order-preserving injection $s: k \to ^{\omega}\omega$ such that $\{s(\alpha): \alpha < k\}$ is cofinal in $^{\omega}\omega$. Recall [2,7] that $CH \Rightarrow \exists$ an ω_1 -scale; $MA \Rightarrow \exists$ a c-scale; an ω -scale; \exists a k-scale and ℓ -scale \Rightarrow $cf(k) = cf(\ell)$; for every model m with regular ordinals k and ℓ with $cf(k) \neq \omega \neq cf(\ell)$ and $k \leq \ell$, there is a model $n \supseteq m$ with a k-scale in $^{\omega}\omega$ and $c = \ell$; and \exists models m of ZFC without k-scales for any k.

Theorem 2. (\exists a k-scale in $^{\omega}\omega$). Suppose $cf(\lambda) = \omega$, then for $\Box^{\omega}(\lambda+1)$ to be paracompact it is necessary and sufficient that \exists $\{\gamma_n \colon n \in \omega\} \subseteq \lambda \ni \sup_{n \in \omega} \gamma_n = \lambda$ and $\Box_{n \in \omega} (\gamma_n+1)$ is paracompact.

Proof. Necessity is obvious so we prove sufficiency.

WLOG assume $\gamma_n < \gamma_{n+1} \ \forall \ n \in \omega$, $cf(\gamma_n) = 1 \ \forall \ n \in \omega$, and $\{s(\alpha): \alpha < k\}$ is a k-scale in $^\omega\omega$ for a regular k. Let R be

an open cover of $\nabla^{\omega}(\lambda + 1)$. For each $\tau < k$ and $d \in {}^{\tau}c$ we construct inductively V(d), W(d), $\theta(d)$, and A(d) to satisfy:

- (1) V(d) and W(d) are clopen subsets of $\nabla^{\omega}(\lambda + 1)$, $\exists \ U \in \mathbb{R} \ni V(d) \subseteq U$, $V(d) \cup W(d) \subseteq W(d \upharpoonright \sigma) \quad \forall \ \sigma < \tau$, and if $\sigma < \tau$ is a limit ordinal $W(d \upharpoonright \sigma) = \bigcap_{0 \le \sigma} W(d \upharpoonright \rho)$.
- (2) If $\sigma \leq \tau$ is an odd ordinal, then $\{V(e): dom(e) \leq \sigma\} \ \cup \ \{W(e): dom(e) = \sigma\}$ is a pairwise-disjoint covering of $\nabla^{\omega}(\lambda + 1)$.
- (3) A(d) is an infinite subset of ω and if $\sigma \leq \tau$ is a non-limit ordinal, then A(d $\Gamma \sigma$) < A(d $\Gamma \rho$) $\forall \rho < \sigma$.
- (4) θ (d) (n) = $\gamma_{s(\alpha)}$ (n) \forall $n \in \omega$ and some $\alpha < k$; and if $\sigma \leq \tau$ is even, then

$${n: \theta(d \upharpoonright \sigma) (n) < \theta(d \upharpoonright \rho) (n)} \equiv \phi \quad \forall \rho < \sigma.$$

- (5) If $\sigma \leq \tau$ is odd, then $W(d \upharpoonright \sigma) \subseteq \langle A(d \upharpoonright \sigma), \theta(d \upharpoonright \sigma) \rangle$ and $\{V(e): e \in {}^{\sigma}c, e \upharpoonright \sigma 1 = {}^{\gamma}d \upharpoonright \sigma 1\} = \langle \phi, \theta(d \upharpoonright \sigma) \rangle \cap W(d \upharpoonright \sigma 1).$
- (6) If $\sigma \leq \tau$ is a non-limit even ordinal, then $V(d \upharpoonright \sigma) = W(d \upharpoonright \sigma) \cap \langle A(d \upharpoonright \sigma 1), \theta(d \upharpoonright \sigma 1) \rangle.$

Now suppose our objects V(d), W(d), $\theta(d)$, and A(d) have been constructed to satisfy (1) through (6) \forall $d \in {}^T c$ \forall τ < λ . For $\mathbf{x} \in \Pi^{\omega}(\lambda + 1)$ define

$$x^{\#}(n) = \begin{cases} 0 & \text{if } x(n) = \lambda \\ x(n) & \text{otherwise.} \end{cases}$$

We may find the first $\alpha \ni \{n: \gamma_{\mathbf{S}(\alpha)}(n) \le \mathbf{x}^{\#}(n)\} = \emptyset$. If $\alpha = \alpha_0 + m$, where $\alpha_0 = 0$ or is a limit ordinal and $m \in \omega$, let $\tau = \alpha_0 + 2(m+1)$. From (2), (4), (5), and (6) we have $\mathbf{E}(\mathbf{x}) \in \bigcup \{V(e): dom(e) \le \tau\}.$

Therefore, $\{V(d): d \in {}^{T}c, \tau < k\}$ is a pairwise-disjoint clopen refinement of R covering $\nabla^{\omega}(\lambda + 1)$. So we must complete our

construction.

Let $A(\phi) = \omega$, $W(\phi) = \nabla^{\omega}(\lambda + 1)$, and α be the first ordinal such that $E(\Pi_{n \in \omega}[\gamma_{s(\alpha)(n)}, \lambda])$ is contained in some $U \in R$. Let $\theta(\phi)(n) = \gamma_{s(\alpha)(n)} \ \forall \ n \in \omega$ and $V(\phi) = \langle \ A(\phi), \theta(\phi) \ \rangle$.

Suppose for an ordinal $\rho < k$ we have constructed V(d), W(d), $\theta(d)$, and A(d) to satisfy (1) through (6) $\forall d \in {}^{\mathsf{T}} c \ \forall$ $\forall c \in {}^{\mathsf{T}} c$

Case 1. ρ is an odd ordinal.

Let $\tau = \rho - 1$ and $\theta(e) = \theta(d)$ if $e \in {}^{\rho}c$ and $e \upharpoonright \tau = d$. Let $\{A(e): e \in {}^{\rho}c, e \upharpoonright \tau = d\}$

be a listing of exactly one element from each equivalence class of elements of

{A:
$$\phi < A < A(d \upharpoonright \sigma), \sigma < \tau$$
 }.

For each $e \in {}^{\rho}c$ we let

 $W(e) = W(e \upharpoonright \tau) \cap \langle A(e), \theta(e) \rangle$.

If $d \in {}^T c$, then $W(d) \cap \langle \phi, \theta(d) \rangle$ is a clopen subset of $E(\Pi_{n \in \omega}[0, \theta(d)(n)])$

and $\Pi_{n\in\omega}[0, \theta(d)(n)]$ is a clopen subset of a subproduct of $\Pi_{n\in\omega}(\gamma_n+1)$; therefore, by the lemma (ii) and (iii) we may find a pairwise-disjoint clopen refinement of R,{V(e): $e\in^{\rho}c$, $e\upharpoonright \tau=d$ } whose union is W(d) $\cap \langle \phi, \theta(d) \rangle$. Clearly, (1) through (6) are satisfied.

Case 2. p is a non-limit even ordinal.

Let τ = ρ - 1, and A(e) = A(d), and W(e) = W(d) if $e \in {}^{\rho}c$ and $e \upharpoonright \tau$ = d. If $d \in {}^{\tau}c$ and W(d) = ϕ , we let W(e) = V(e) = ϕ and

$$\theta$$
 (e) (n) = $\gamma_{\mathbf{S}(\alpha+1)}$ (n) \forall $n \in \omega$; where θ (e \uparrow τ) (n) = $\gamma_{\mathbf{S}(\alpha)}$ (n) \forall $n \in \omega$.

If $d \in {}^{T}c$, $W(d) \neq \phi$, and

$$Y(d) = \{g \upharpoonright \omega - A(d) : y^{-1}(\lambda) = A(d), E(y) \in W(d)\} = \phi.$$
 In $\nabla_n \not\in A(d)$ $(\theta(d)(n) + 1)$, let

Since $\bigsqcup_{n \neq A(d)} (\theta(d)(n) + 1)$ is homeomorphic to a clopen subset of a subproduct of $\square_{n\in\omega}(\gamma_n+1)$, we may use the lemma, (ii) and (iii), to find a pairwise disjoint clopen refinement $\{G(\delta): \delta < c\}$ of R(d) whose union is E(Y(d)). If $e \in {}^{\rho}c$, $e \upharpoonright \tau = d$, $e(\tau) = \delta$, then let $\alpha(\delta)$ be the first ordinal $> \alpha(d)$, where $\theta(d)(n) = \gamma_{s(\alpha(d))(n)} \forall n \in \omega$, such that

$$V(e) = \{E(x) \in W(d) : E(x \upharpoonright \omega - A(d)) \in G(\delta), x(n) > 0\}$$

$$\gamma_{s(\alpha(\delta))(n)} \forall n \in \omega$$

is contained in a member of R. Let θ (e) (n) = $\gamma_{s(\alpha(\delta)(n)} \forall n \in \omega$. Clearly, (1) through (6) are satisfied.

Case 3. ρ is a limit ordinal.

If $e \in {}^{0}c$, let $A(e) = \omega$, $V(e) = \phi$, and $\theta(e)(n) = \gamma_{s(\alpha)}(n)$ \forall n $\in \omega$, where

$$\alpha = \sup\{\beta: \theta(e \upharpoonright \tau)(n) = \gamma_{s(\beta)(n)} \forall n \in \omega, \tau < \rho\}.$$

To see that (1) through (6) are satisfied, we must show

$$W(e) = \bigcap_{\tau < 0} W(e \upharpoonright \tau)$$
 is open.

However, if $E(x) \in W(e)$, then the induction hypothesis and the definition of W(d) in Case 2 yields

$$E(I[x*(n), x(n)]) \subseteq W(e),$$

where

$$x^*(n) = \begin{cases} x(n) & \text{if } cf(x(n)) = 1\\ \theta(e)(n+1) & \text{if } x(n) & \text{is a limit} > \theta(e)(n)\\ \sup\{\theta(e \upharpoonright \tau)(n) : \theta(e \upharpoonright \tau)(n) < x(n), \tau < \rho\} + 1, \text{ otherwise.} \end{cases}$$

This completes the construction and the proof of Theorem 2.

Remarks

A. There are many models of ZFC, constructed via forcing, in which there are no k-scales [2]. However, J. Roitman [4] has shown that in some of these models, techniques inadvertedly, in some sense, yield $\square_{n\in\omega} X_n$ paracompact \forall compact metrizable X_n ; specifically she has shown:

In a model m of set theory which is a direct iterated CCC extension of length k of a model n, cf(k) > ω \Rightarrow $\nabla_{\mathbf{n} \in \omega} \mathbf{X}_{\mathbf{n}}$ is paracompact if $\mathbf{X}_{\mathbf{n}}$ is regular and separable.

- B. Suppose u_0 is an ordinal and for n>0 u_n is the lexicographic ordered product of u_{n-1} with itself. Let $u=\sup_{n\in\omega}u_n$. It is unknown whether (\exists a c-scale in ${}^\omega\omega$) $\Rightarrow \bigsqcup^\omega(u+1)$ is paracompact when $u_0=\omega_1$; however, our theorems show (\exists a k-scale in ${}^\omega\omega$) $\Rightarrow \bigsqcup^\omega(u_n+1)$ is paracompact \forall $n\in\omega$. It is unknown whether $\bigsqcup^\omega(\omega+1)$ is paracompact $\Rightarrow \bigsqcup^\omega(u+1)$ is paracompact when $u_0=\omega$; although $\bigsqcup^\omega(u_n+1)$ is paracompact for each n. The simplest question still unanswered is "Does there exist a model m of ZFC in which $\bigsqcup^\omega(\lambda+1)$ is not paracompact for some ordinal λ ?" The hardest question asks that $\lambda=\omega$.
- C. We observe a recent result communicated to the author by E. K. van Douwen: If X_n is compact $\forall n \in \omega$, then $\square_{n \in \omega} X_n$ is pseudo-normal. The author gives much appreciation to the referee whose suggestions for clarification of

 $^{^4 \}nabla^\omega (u_n + 1)$ may be embedded in $\nabla^{u_n + 1} (\omega + 1)$.

unnecessary technicalities in our proofs appear.

Added in proof

Recently, J. Roitman has proved that $\Box_{n\in\omega}X_n$ is paracompact whenever each X_n is compact first countable and $^\omega\omega$ fails to have a cofinal family of cardinality less than the continuum. A corollary to this theorem and our theorems 1 and 2 yields $c=\omega_2\Rightarrow\Box^\omega\omega_1+1$ is paracompact. Independently, I have shown the same corollary and, in addition:

Suppose, in theorem 2, (\exists a κ -scale in $^{\omega}\omega$) is replaced by κ is the least cardinal of any cofinal family in $^{\omega}\omega$ and $A\subset \mathbf{P}(\omega)$ with $|A|=\kappa$, then

$$E(\{x \in \Box^{\omega} \lambda + 1: x^{-1}(\lambda) \in A\})$$
 is paracompact.

References

- 1. E. K. van Douwan, \exists a k-scale implies $\Box_{n \in \omega} X_n$ is paracompact if X_n is compact metric \forall $n \in \omega$, lecture presented at the Ohio University Conference on Topology, May 1976.
- 2. S. Hechler, On the existence of certain cofinal subsets of $^{\omega}\omega$, Axiomatic Set Theory, Proc. Symp. Pure Math. (vol. 13, part 2), AMS (1974), 155-173.
- 3. K. Kunen, On the normality of box products of ordinals, preprint.
- 4. J. Roitman, Paracompact box products in forcing extensions, to appear.
- 5. M. E. Rudin, Countable box products of ordinals, Trans. Amer. Soc. (vol. 192), AMS (1974), 121-128.
- 6. _____, Lectures on set theoretic topology, Conf. board math. sci. reg. conf. series in math #23, AMS (1975).
- 7. S. Williams, $Is \square^{\omega}(\omega + 1)$ paracompact? Proceedings of the Auburn University Conference on Topology, 1976.

State University of New York at Buffalo Amherst, New York 14226