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DISCRETE SEQUENCES OF POINTS 

J.E. Vaughan 

Abstract 

We consider a weak version of R. L. Moore's property 

D. Roughly speaking, a space X is said to have property D 

if each discrete (in the locally finite sense) sequence of 

points in X can be "expanded" to a discrete family of open 

sets in X. A space is said to have property wD if each 

discrete sequence has a subsequence which can be "expanded" 

to a discrete family of open sets. All regular, submetrizable

spaces and all realcompact spaces have property wD. In the 

class of regular spaces in which every point is a Go' propert 

wD is both hereditary and wI-fold productive. In the class 

of T3-spaces, finite to-one perfect maps preserve property 

D, but do not necessarily preserve property wD (for example, 

we show that certain finite-to-one perfect images of the 

Niemytzski plane and of the Pixley-Roy space do not have 

property wD). Property wD, however, is preserved by n-to-one

perfect maps for every positive integer n. Whether every 

product of perfectly normal T1-spaces has property wD is 

independent of the usual axioms of set theory. 
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1. Introduction 

R. L. Moore introduced property 0 in his book [M02 , 

p. 69] and this concept has been rediscovered and renamed 

several times since then [GJ, Problem 3L], [Ha], [Mis], 

[Mol]. As far as we know, property wD was first explicitly 

considered (under different terminology) by K. Morita [Mol]' 

and later in a different context by others [VD ], [V ]. Both1 3

properties deal with countably infinite sets of points which 

are discrete (in the whole space) in the locally finite sense. 

Such sets are often called countable, closed discrete sets, 

and we sometimes refer to them as discrete sequences (for 

more precise definitions see §2). 

Definition 1. A countably infinite discrete set A c X 

has ppopepty D in X provided there exists a discrete family 

of open sets {U : a E A} such that U n A {a} for all a E A, a a 

and the discrete set A is said to have ppopepty wD in X 

provided there exists an infinite subset of A which has 

property D in X. 

Definition 2. A space X is said to have ppopepty D 

(resp. ppopepty wD) provided that every countably infinite 

discrete set in X has property D (resp. property wD) in X. 

Property 0 can be considered as a weak form of normality 

from at least two points of view. Several authors have 

noticed that a T3 l/2-space X has property D if and only if 
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every discrete sequence in X is C-embedded in X, and that a 

T3-space X has property D if and only if every pair of dis­

joint closed sets, one of which is a discrete sequence, can 

be separated by disjoint open sets. Analogous characteri­

zations of property wD can be found by starting with either 

of the two preceding characterizations of property D, and 

"passing to a subsequence." Most ways of looking at property 

wD are equivalent in the class of T 1/2-spaces, but differ
3 

in general. For example the definition of property wD given 

by R. E. Hodel [Ho] is slightly stronger than the one in this 

paper because Hodel's definition applies to "sequences having 

no cluster points" instead of to "discrete sequences" (these 

two definitions are obviously the same in the class of Tl ­

spaces) . 

Since after passing to a subsequence, property wD does 

the same thing as property D, it retains some of the strength 

of property D. Indeed, some results which have property D 

as part of their hypotheses are still true when property D 

is replaced by property wD. This is the case with Theorems 

159 and 161 in Moore's book [M02 , p. 70] and Theorems 11 and 

14 in [Ha]. 

In addition to the study of C(X), property wD has been 

used concerning mapping theorems [SA], cardinal functions in 

topology [Ho], set theory and topology [VDl]' and countab1y 

compact extensions of X in SeX) [Moll, [Ka2 ]. 

The following diagram of implications (which holds in 

the class of T3-spaces) indicates the relation of property 

wD to several well-known properties. 
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/ normal" 

paracompact pseudonormal~propertyD~property wD 

countably "" countably / 
compact ~ paracompact 

We believe that property wD is of special interest in 

spaces in which every point is a Go. If we do not have the 

requirement that every point is a Go' then property wD is 

neither hereditary nor finitely productive in the class of 

T3 1/2-spaces. For example, the Tychonoff plank [Wi, p. 122] 

is easily seen not to have property wD, and yet it is a sub­

space of a compact T2-space (clearly, every (countably) com­

pact space has property wD). Thus, property wD is not heredi­

tary in the class of T3 1/2-spaces. We can also use known 

examples to show that property wD is not productive in that 

class either. It is known [GS, Example 5.2] that there 

exist two countably compact spaces X and Y (both subspaces 

of Sew)) with the property that X x Y is pseudocompact (i.e., 

there exists no infinite locally finite family of open sub­

sets of X x Y) but X x Y is not countably compact (so X x Y 

contains a discrete sequence). Thus, both X and Y have 

property wD but X x Y does not. 

Our principal theorems are concerned with the preser­

vation of property wD under perfect maps, and with finding 

classes of spaces in which property wD is hereditary or is 

productive to some extent. We originally proved several of 

our theorems in the class of T3-spaces in which every point 

is a Go' but discovered that we did not require the full 

strength of that class. For these results, we only need 
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the following concept (which is known under several names): 

A point x in a space X is called a Hausdorff-Go provided 

that {x} is the intersection of countably many closed neigh­

borhoods of x (we assume the open neighborhoods are nested). 

In §3 we prove 

Theorem A. In the class of spaces in which every point 

is a Hausdorff-Go' property wD is wI-fold productive. 

In contrast to this we note that even in the class of 

first countable, T3 1/2-spaces, property D is not productive. 

For example, the Sorgenfrey line S [Wi, 4.6] is a first 

countable, T3 1/2-space which has property D (S is a Lindelof 

space) but S x S does not have property D (Sorgenfrey's 

proof [So] that S x S is not normal uses two disjoint closed 

discrete sets, one of which is countable). 

The space S x S has property wD (by Theorem A, or by 

Corollary 3.5 which states that every submetrizable T3-space 

has property wD); so S x S is an example of a space which 

has property wD but does not have property D. For an easy 

example of a Moore space which does not even have property 

wD we may take the well-known example N u ~ of S. Mrowka 

[Mr ] (this space is called ~ in [GJ]). Recall that this
l 

space consists of a countable discrete space N and a maximal 

family ~ of almost disjoint subsets of N. The points of N 

are isolated and a local base for a point R in ~ consists of 

all sets of the form {R} U T where T is a cofinite subset of 

R. The space N U ~ is pseudocompact but not countably com­

pact;	 so it does not have property wo. 

In §4. we prove 
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Theorem B. In the class of Urysohn spaces in which 

every point is a Hausdorff-Go' property wO is hereditary. 

Again note the contrast in behavior of property wO with 

that of property 0: Property 0 is not hereditary in the 

class of first countable, T3 1/2-spaces. To s'ee this, let 

I* denote the top and bottom lines of the lexicographically 

ordered square (cf. [VI]). We may consider the Sorgenfrey 

line S as a subspace of I * and therefore S x S as a subspace 

* * * of I x I. Since I is a first countable, compact T2-space, 

* * * * so is I x I. Thus I x I has property 0, but its subspace 

s x S does not. 

In §5, we give several results concerning perfect maps. 

We mention one theorem and one example here. 

Theorem C. Let f: X ~ Y be a perfect map from a space 

X which has property wO onto a T 3-space Y. If there exists 

a positive integer n such that for all y E Y we have 

If-l(y) I < n, then Y has property wo. 

The restriction in Theorem C on the cardinality of point 

inverses is needed. Example 5.6 shows that there exists a 

finite-to-one perfect map defined on the Niemytzki plane 

(which is a submetrizable T3 1/2-space) whose image does not 

have property wo. (This image space is an example of a 

separable Moore space which does not have property wO). 

In §6, we show that Example 5.6 and similar examples 

(e.g., the Pixley-Roy space [PRJ) can be used with property 

wO in the study of perfect images of submetrizable and real-

compact spaces. 



TOPOLOGY PROCEEDINGS Volume 3 1978 243 

Some of the results in this paper were announced in 

2. Preliminaries 

We first recall several definitions. 

2.1 Definitions. A family J of subsets of a topologi­

cal space X is said to be locally finite at a point x in ~ 

provided there exists an open set U containing x which inter­

sects at most a finite number of elements of J. If there 

exists an open neighborhood of x which intersects at most 

one member of J, we say that J is discpete at x. A subset 

A eX is called a discpete set if the family {{a}: a E A} 

is discrete at every point of X. tn this paper we are con­

cerned with the case where A is countable, and we sometimes 

say that A is a discpete sequence. In other words, a dis­

crete sequence of points is a one-to-one indexing of a 

countably infinite discrete set. 

We note that a space in which every point is a Go' is

a Tl-space, and that in a Tl-space every subset of a discrete 

set of points is a closed set. 

We make the following definition in order that we may 

consider in detail a standard type of construction. 

2.2 Definition. A point p in a space X is called a 

Hausdopff point (resp. Upysohn point) provided that for 

every x E X\{p} there exist open sets U, V such that x E U, 

P E V, and U n V = ~ (resp. IT n V = ~). 

Clearly, a point which is a Hausdorff-Go is a Hausdorff 

point (this is why we use the term "Hausdorff-Go"). Recall 
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that a space is said to be a Urysohn space if every pair of 

distinct points have disjoint closed neighborhoods. 

2.3. Lemma. Let A be a countably infinite subset of a 

space x, and let p E A\A. If P is both a Hausdorff-Go and 

a Urysohn point in x, then there exists an infinite sequenae 

{ai : i < w} in A and a family V = {Vi: i < w} of open sets 

in X such that a. 
] 

E V. 
1 

iff i = j, and V is discrete at each 

point of X\{p}. 

Proof· Let {p} = n{G.: i < w} where G. is an open set 
1 1 

containing p for each i < w. Pick a O E GO n A, and let V o 

and U be open sets with a O EVa, p E UO' and V n U = ~.o o o 
There exists a positive integer nO such that a O i G • Pick 

no 
a l E (UO n G ) n A (so a 

O 
~ all and let VI and Ul be open 

no 
sets such that a l E VI C U n G ' p E Ul C UO' ando no 
VI n Ul =~. Thus Va n VI =~. Continue in this way to 

construct the sequence {al : i < w} and the family of open 

sets V = {Vi: i < w} whose closures are mutually disjoint 

and such that a. E V. c G (where nO < < ••• < n. <n l1 1 n i - l 1-1 

n . < ••• ). The condition V. c G implies that V is 
1 1 n i-I 

locally finite, hence discrete, in X\{p}. 

2.4. Remark. In Lemma 2.3, if we assume that p is a 

Hausdorff-Go but not necessarily a Urysohn point, then we 

can proceed in a manner similar to the proof of Lemma 2.3, 

and get the family V = {V.: i < w} to be a locally finite 
1 

family of mutually disjoint open sets, but since the closures 

of the members of V are not necessarily disjoint, it does 

not follow that V is a discrete family. This situation 

occurs in Bing's countable, connected Hausdorff space [B]. 
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Likewise, if we only assume in Lemma 2.3 that the point p is 

a Go and a Urysohn point, then we can get the elements of 

V to have mutually disjoint closures, but we cannot neces­

sarily get V to be locally finite at every point in X\{p}.
 

This situation occurs in a space considered by R. M.
 

Stephenson, Jr. [St., Example 5] which is a Urysohn space
 

in which every point is a Go but one point is not a 

Hausdorff-Go· 

2.5. Lemma. A regular Tl-space X has property wD if 

and only if X satisfies the following condition: For every 

countably infinite discrete set A c X, there exists an 

infinite locally finite family {Vi: i < w} of open sets in 

X such that Vi n A ~ ~ for infinitely many i < w. 

Proof. If X has property wD, it satisfies the condition 

without any assumption concerning separation axioms. We 

assume the condition holds and that X is a regular Tl-space, 

and show that X has property wD. By passing to a subsequence 

of A, and by using the fact that every subset of A is closed 

in the Tl-space X, we may assume that Vi n A consists of a 

single point, call it ai' for all i < w. Let nO = O. There 

exists a positive integer n < wand an open neighborhoodl
 

U of af) such that U n V. Proceeding by

nO nO 1 

induction, we get a locally finite family {Un. n V : i < w}
ni1 

of mutually disjoint open sets such that an. E U n Vn. n. 
1 1 1
 

for all i < w. Since X is regular there exist open sets
 

Wi such that ani E Wi C Wi C U n V • Then {Wi: i < w}
ni ni 

is a discrete family of open sets in X such that 

W. n A = {a } for all i < w. Thus X has property wD. This 
1 n. 

1 

completes the proof. 
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Recall that a space is called feebly compact provided 

that every locally finite family of open sets in the space 

is finite, and that feeble compactness is equivalent to 

pseudocompactness in T3 1/2-spaces. 

2.6. Remark. A Tl-space is countably compact if and 

only if it is feebly compact and has property wo. 

This can be considered as a slight generalization of 

[GJ, 3L, 5]. 

A space X with topology T is called submetrizable pro­

vided there exists a metrizable topology M on X such that 

M cT. We recall a well-known example of a non-regular, 

submetrizable space. Let M denote the usual topology on the 

closed unit interval [0,1] and let T be the topology on 

[0,1] having as a subbase 

M u {[O,l] , {lin: 1 ~ n < w}} 

The topology T is obviously submetrizable and not regular. 

This is an example of a submetrizable space which does not 

have property wo. One way to see this is to note that this 

space is feebly compact but not countably compact. 

3. Some Basic Results 

3.1. Proposition. If X is a first countable, Hausdorff 

space having property wD, then X is regular. 

Proof. If X is not regular, then there exist a closed 

set F and a point p i F such that for every neighborhood 

U of p, IT n F ~ S. Let {u : n < w} be a nested local base n
 

at p such that {p} = n{IT : n < w} . Clearly, for infinitely
n
 

many n < w, we have (Un "IT 1) n F ~ S, and by the nesting,
n+ 
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these subsets of F are mutually disjoint. By passing 

to a subsequence, we may assume that (Un \ U + ) n F ~ ~ n l
 

for all n < w. Pick a sequence an E (Un 'U +l ) n F of
 n
 

distinct points. Now A = {an: n < w} is a discrete sequence
 

in X, and hence by property wD (and by passing to a subse­

quence) we may assume there exists a discrete family
 

1/ = {V : n < w} of open sets in X such that V n A {an }
 
n n 

for all n < w. Since {U : n < w} is still a local base for p, 
n
 

there exists k < w such that Uk intersects at most one mem­

ber of V. On the other hand, for all n < w, Un n V ~ ~; n
 

so Un n V ~~. Thus, for n ~ k, Uk n V ~~. This is a
 n n
 

contradiction.
 

The hypothesis "Hausdorff" cannot be weakened to "Tl "
 

in Proposition 3.1, as the example of the cofinite topology
 

on w shows.
 

Proposition 3.1 can be considered as a generalization
 

of C. Aull's result [AI] that a first countable, countably
 

paracompact T2-space is regular. The following example,
 

which is an elaboration of Aull's example [A Example 1],
2 ,
 

shows that "first countable" cannot be in 3.1.
 

3.2. ExampZe. A sUbmetrizable space which has property 

wD and is not regular. 

The set X consists of wI x (w + 1) together with a
 

point p not in wI x (w + 1). All points of wI x ware to be
 

isolated, and a point (a,w) where a < wI has basic neighbor­


hoods of the form
 

{(a,m): n ~ m ~ w} 
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Let {P : n < w} be a partition of wI into countably manyn 

uncountable sets. Define the basic neighborhoods of p as 

follows: For every a < wI and n < W 

W(a,n) = {(B,i): a:S B < wI' n.:s i < w, BE UP.} U {pl. 
j~n J 

Since each W(a,n) contains points whose second coordinate is 

w, the space X is not regular. To see that X is submetri­

zable, note that the sets W(a,n) are clopen in X, and that 

{W(D,n): n < w} serves as a base for p in a metrizable 

topology On X in which all the other points have their same 

neighborhoods. That the space X has property wD (even prop­

erty D) follows from the fact that for every co~ntable set 

A c X with PiA, there exists a < wI such that A n W(a,D) =~. 

It is obvious that property wD is closed-hereditary, 

i.e., inherited by closed subspaces. We now consider the 

hereditary nature of property wD. 

3.3. Proposition. Property wD is hereditary in the 

class of Urysohn spaces in which every point is a Hausdorff-

Proof. Let Y c X, and let A be a countably infinite 

discrete set in the subspace Y. If A is also discrete in X f 

there is nothing to prove; so we assume that there is a point 

P E X\Y such that p E A\A. By Lemma 2.3, there is a sequence 

of distinct points {a : i < w} c A and a family V = i 

{Vi: i < w} of open sets with Vi n A = {ail for all i < w, 

and such that V is discrete at each point of X\{p}. Since 

P i Y, the family {V. n Y: i < w} is discrete in Y, and this 
1 

completes the proof. 

It follows from Proposition 3.3 that property wD is 
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hereditary in the class of regular spaces in which every 

point is a Go. By Proposition 3.1, therefore, property wD 

is hereditary in the class of first countable, Hausdorff 

spaces. We have an example which shows that property 

wD is not hereditary in the class of Urysohn spaces in which 

every point is a Go. This leaves us with the following 

Problem. Is property wD hereditary in the class of
 

spaces in which every point is a Hausdorff-Go?
 

The example ([0,1], T) given in §2 is a non-regular,
 

submetrizable space, which does not have property wD.
 

The next result shows, however, that every regular,
 

submetrizable space has property wD.
 

3.4. Proposition. Let (X,S) be a space having property 

wD in which every point is a Hausdorff-Go. If T is a regular 

topology on X which is finer than S (i.e., T ~ S) then (X,T) 

has property wD. 

Proof. Let A eX be a countably infinite discrete set 

in the space (X,T). If A is also discrete in the space 

(X,S) there is nothing to prove; so we assume that A is not 

a discrete set in (X,S). By passing to a subsequence (if 

necessary), we may assume that there exists a point 

P E C1S(A)\A. By Remark 2.4, there exists an infinite set 

{a i : i < w} e A and a family {Wi: i < w} c S which is locally 

finite in (X,S) at every point of X\{p}, and such that 

a. E W. iff j = i. Since (X,T) is regular, there exists
J 1 

U E T such that p E U and CIT(U) n A =~. Put Vi 

(Wi\C1T(U)) for all i < W. Then {Vi: i < w} is a locally 

finite family of open sets in (X,T) such that Vi n A ~ S for 
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all i < w. Lemma 2.5 implies that (X,T) has property wD,
 

and this completes the proof.
 

3.5. Corollary. Every regula~ submetrizable space has 

property wD. 

3.6. Corollary. Let X be a first countable, submetri­

zable space. Then X has property wD if and only if X is 

regular. 

Example 3.2 shows that "first countable" cannot be 

deleted from Corollary 3.6. 

4. Products 

The theory of products of spaces having property wD is 

closely related to the theory of products of countably com­

pact and feebly compact spaces. 

4.1. Lemma. Let {X : a < K} be a family of Tl-spacesa
 

having property wD, let A be an infinite countable discrete
 

subset of X = TI{X : a < K} and put Y = Clx ~ (A», where a a a a 
TI is the usual projection map TI : X ~ X • a a a 

(a) If there exists a < K such that Y is not feebZya
 

compact, then A has property wD in X.
 

(b) C,Jnversely, if A has property wD in X, and each
 

point in each X is a Hausdorff-Go' then there exists a < K
 a
 

such that Y is not feebly compact.
a 

Proof of (a). If Y is not feebly compact, there exists a 

an infinite locally finite family {U : i < w} of open sets in
i 

Y • Since TIa{A) is dense in Y , we may pick by induction an 
a a
 

infinite sequence Xi. E Ui . n TIa(A). Since X is TI , the
a 
] ] 
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locally finite set {x. : j < w} of points is a discrete 
1. 

] 
sequence in Y and in X . By applying property wD and passinga a 

to a subsequence, we may assume that there exists a discrete 

family {Vi: i < w} of open sets in X such that x. E V. for a 1. JJ 
all j < w. It is easy to check that {1T 

-1 
(V j ) : j < w} is 

discrete in X and that each 1T- l (V'.) n A ~ ~. Since every
a J 

subset of A is closed in X, we can find an open subset of 

each 1T-
l (v.) that contains exactly one point of A. 

J 

Proof of (b). Suppose A has property wD in X. Then no 

subspace of X can both contain A and be feebly compact. If 

each Y is feebly compact, then by Remark 2.6 each Y is 
a a 

countably compact (since property wD is hereditary to closed 

subspaces). Further, since each point in Y is a Hausdorff­
a 

Go' Y is first countable; hence sequentially compact. Bya 

Theorem 5.2 in [SS] every product of sequentially compact 

spaces is feebly compact. Thus IT{Y : a< k} is feebly compact
a 

and contains A. This is a contradiction. 

4.2. Theorem. If {X : a < wI} is a family of spaaesa 

having property wD, and in whiah every point is a Hausdorff-

Go' then TI{X : a < wI} has property wD. a 

Proof. Let A be an infinite countable discrete set in 

X = IT{X : a < wI}. By Lemma 4.1 (a), it suffices to show 
a 

that there exists some Y which is not feebly compact. If 
a 

this is false, then every Y is feebly compact, and pro­a 

ceeding as before, we see that every Y is sequentiallya 

compact. By a theorem of Scarborough and Stone [SSe Theorem 

5.5], every wI-fold product of sequentially compact spaces 

is countably compact; so A is contained in a countably 
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compact subspace of X. This contradicts the assumption that 

A is discrete in X. 

The next result does not require that points be Go-sets. 

4.3. Theopem. Let P be a topological ppopepty which 

is hepeditapy to closed subspaces, and such that evepy count­

ably compact space having ppopepty P is compact. Then evepy 

ppoduct of Tl-spaces, all of which have both ppopepty P and 

ppopepty wD, has ppopepty wD. 

Ppoof. The proof is similar to that of Theorem 4.2, 

but uses the Tychonoff product theorem [Wi' 17.8] rather 

than the theorem of Scarborough and Stone. 

We state a few consequences of this result. 

4.4. Copollapy. 

(a) Evepy ppoduct of metpic spaces has ppopepty wD. 

(b) Evepy pealcompact space has ppopepty wD. 

(c) Evepy ppoduct of pegulap, a-spaces having ppopepty 

wD, has ppopepty wO. 

(d) (MA + ,CH). Every product of perfect, T 3-spaces 

having ppopepty wD has ppopepty wD. 

(e) (MA + ,CH). Evepy ppoduct of pePfectly nopmal 

T2-spaces has wD. 

Ppoof. For (d) use the theorem of W. Weiss [W] which 

states: (MA + ,CH) implies that every perfect, countably 

compact T3-space is compact. Then (e) is a consequence of 

(d) • 

Thus in the class of spaces in which every point is a 

Hausdorff-Go' there are many families whose products have 
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property wD. Finding a family in that class whose product 

does not have property wD is equivalent to solving a we11­

known open problem in general topology. 

4.5. Lemma. The following are equivalent. 

(1) There exists a family {x : a < K} of spaces havinga 

wD 3 and in which every point is a Hausdorff-Go3 such that 

X = IT{X : a < K} does not have property wD. a 

(2) There exists a family {Y : a < K} of first countable3a 

sequentially compact T2-spaces whose product Y IT{Y : a < K}
a 

is not countably compact. 

Proof· (1) ~ (2). If X does not have property wD, 

there exists an infinite closed discrete set A c X such that 

A does not have property wD in X. By Lemma 4.1(a) each 

Y = C1 (TIa(A)) is feebly compact and therefore sequentiallya x a 
compact and first countable. Since A c Y = IT{Y : a < k} we a 

see that Y is not countab1y compact. 

(2) ~ (1). By Theorem 5.2 of [55] the product space Y 

is feebly compact but by hypothesis not countab1y compact. 

Thus Y does not have wD by Remark 2.6. 

Using this lemma, we can point to product spaces which 

do not have property wD. Under certain set theoretic assump­

tions such as CH, several authors have given examples to show 

that the product of first countable, sequentially compact, 

T3-spaces need not be countab1y compact. As we noted in 4.5, 

such products do not have property wD because they are feebly 

compact. Using the set theoretic assumption 0 and the 

technique of A. Ostaszewski [0], we constructed [V2 ] a family 

of first c~untable, perfectly normal, sequentially compact 
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T2-spaces whose product is not countably compact. By com­

bining this example with Corollary 4.4(d) we have 

4.6. Proposition. The statement "every produat of 

perfeatly normal, T2-spaaes has property wD" is independent 

of the usual axioms of set theory (ZFC). 

The theory of box products of spaces having property 

wD has been considered by Eric van Douwen, who also proved 

independently some of the results in this section [VD ].3

5. Perfect maps 

In this section we show that in the class of T -spaces,
3

property wD is not necessarily preserved by finite-to-one 

perfect maps unless there is an upper bound on the cardi­

nality of the point inverses. On the other hand, property 

° is preserved by all finite-to-one perfect maps. 

5:1. Proposition. Let f: X -+- Y be a perfeat map from 

a spaae X having property wD onto a regular Tl-spaae Y. If 

there exists a positive natural number N such that 

If-l(y) I ~ N for all y E Y, then Y has property wD. 

Proof. Let T be a countably infinite discrete set in 

Y. By Lemma 2.5, it suffices to show that there exists an 

infinite locally finite family V of open sets in Y such that 

V n T ~ ~ for infinitely many V in V. To prove this, we will 

use the following well-known fact about perfect maps: If 5 

is a locally finite collection in X, then {f(S): S E 5} is 

locally finite in Y. Since f is a closed map it suffices 

to find a locally finite family {Ut : t E T} of open sets in 

X such that f-l(t) cUt for infinitely many t E T. 
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By passing to a subsequence, we may assume that there 

exists a positive integer m ~ N such that If-l(t) I m for 

all t E T. The proof now proceeds by induction on m. We 

will do the case m = 2, and leave the remainder of the proof 

(including the case m = 1) to the reader. Let f-l(t) = 

{at,b } for all t E T. Since {f-l(t): t E T} is a discretet
 

family in X, the sets A = {at: t E T} and B = {b : t E T}
t 

are discrete aets in X. By property wD there exist an infi ­

nite set T I c T and a discrete family {V : t E T I
} of opent
 

sets in X such that V n A = {at} for all t E T I • Next we
t
 

apply property wD to {b : t E T I 
}, and get an infinite sub­
t
 

set T I 
Ie T I and a discrete family {W : t E Til} of open


t
 

sets in X such that Wt n B = {btl for all t E T I I. Then
 

{V U W : t E Til} is a locally finite family of open sets
t t
 

in X such that f-l(t) c (V U W ) for all t E Til. This
 
t t
 

completes the proof.
 

5.2. Proposition. If f: X + Y is a perfect map such 

that f-l(y) is finite for all y E Y, X is a Tl-space having 

property D, and either X or Y is regular, then Y has property 

D.
 

Proof. Since regularity is preserved by perfect maps,
 

it suffices to prove the result for the case in which Y is 

regular. If T is a countable, discrete set in Y, then since 

X is a Tl-space, S = U{f-l(t): t E T} is a countable, dis­

crete set in X. By property D, there exists a discrete 

family {V : s E S} of open sets in X such that V n S = is}s s 
-1for all s E S. Put U = U{V : s E f (t)}. Thent s 

{Inty(f(U »: t E T} is a locally finite family of mutuallyt 
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disjoint open sets in Y such that Inty(f(U )) n T = {t} fort 

all t E T. Since Y is regular, this completes the proof. 

Next we show that properties D and wD are reflected by 

perfect maps. 

5.3. Proposition. If f: X ~ Y is a (quasi) perfect 

map from a Tl-space X onto a space Y having property wD, 

then X has property wD. 

Proof. Let A be a countably infinite discrete set in 

X. Since f is a closed map, f(A) is a discrete set in Y. 

Since f-l(y) is (countably) compact for all y E Y, we see 

that f-l(y) n A is finite for all y E Y. In particular, 

f(A) is infinite. Since f is continuous, every discrete 

-1family of open sets in Y can be brought back by f to a 

discrete family of open sets in X. Thus, there exists a 

discrete family V of open sets in X such that V n A is non-

empty and finite for every V E V. Since every subset of A 

is closed in X, we may refine V to get a discrete family of 

open sets in X, each of which contains exactly one point of A. 

In a similar manner, one can show that property D is 

reflected by (quasi) perfect maps f: X ~ Y where X is a 

Urysohn space. 

The remainder of this section is concerned with showing 

that finite-to-one perfect maps can destroy property wD. In 

particular, we will show that certain finite-to-one perfect 

images of the Niemytzki plane, and of the Pixley-Roy space, 

do not have property wD. 

5.4. Lemma. Let R be a closed discrete sUbset of a 
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space X, and {F : a < k} a family of mutually disjoint sub­a 

sets of R. Let p: X ~ Y be the quotient map which collapses 

each F to a single point and is one-to-one on X\U{F : a < k}.a a 

Then p is a closed map. Further, p is perfect if and only 

if each Fa is finite. (The proof is routine.) 

5.5. Lemma. Let R be a closed discrete subset of a 

Urysohn space X, and B a countable family of infinite sub­

sets of R having the property 

(*) for every countable HeR, if H n B ~ ~ for 

all B E B, then H does not have property D in X. 

Then there exists a perfect map p: X ~ Y such that Y does 

not have property wD. 

Proof. Let B = {Bi : i < w} and let {F : i < w} be ai 

family of mutually disjoint subsets of R such that (1) F i 

is finite for all i < w, and (2) if j ~ i then F. n B. ~ ~. 
1 J 

Let p: X ~ Y be the quotient map which collapses each F toi 

a point. By Lemma 5.4, p is a perfect map, and clearly 

{p(F ): i < w} is a countable discrete set of points in Y.
i 

We show that this set does not have property wD in Y. If 

it did have property wD in Y then there would exist a sub­

sequence {p(F. ): j < w} and open sets V. in Y such that 
1 j ] 

(a) p(F .) E V. for all j < w, and (b) {V.: j < w} is dis-i J J J 
crete in Y. Now (b) implies that {p-l(v.): j < w} is dis­

J 

crete in X, and (a) implies that F. is a finite subset of
1. 

-1 J 
p (V j ). Since X is a Urysohn space, we may put the points 

of F. into open sets which are contained in V. and have 
1 j ] 

disjoint closures. This shows that F = U{F. : j < w} has 
1 j 

property D in X. By (2), F intersects each B E B, and thus 
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F does not have property D in X. This contradiction com­

pletes the proof. 

We now give several examples of how Lemma 5.5 may be 

applied. 

5.6. Example. Let N be the Niekytzki plane. Recall 

that N is the set of all points in the upper half plane: 

N = {(x,y): y ~ OJ. Let R denote the x-axis: R = 

{(x,O): - 00 < x < oo}. 

The topology on N is defined as follows: Points above 

the x-axis have their usual open disks as basic neighborhoods, 

and points p on the x-axis have as basic neighborhoods all 

sets of the form {p} U A (where A is an open disk in N tan­

gent to the x-axis at p). Let B be a countable base for the 

usual topology on R. We show that (*) of Lemma 2.2 holds 

for Rand B. Suppose that H is a countable subset of R such 

that H n B ~ ~ for all B E B. To show that H does not have 

property D in N, it suffices to show that Hand R\H cannot 

be separated by open sets in N. This is done in the standard 

way using a Baire category argument. 

In a similar manner, Lemma 5.5 dan be applied to S x S, 

where S is the Sorgenfrey line, and to many versions of 

Niernytzki's space such as the next example. 

5.7. Example. (R. W. Heath [He]) Let H be Heath's 

V-space. Recall that the set H = {(~,y): y ~ a} and the 

topology for H is defined as follows. All points (x,y) with 

y > a are isolated, and for a point p = (PO'O) on the x-axis, 

a local base is given by all sets of the form 
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V(p,n) {p} U {(x,y): 0 < y < lin, and 

y = ± «1T14) x - (1T14) PO) }. 

where 0 < n < w. Thus, V(p,n) is a subset of the union of 

two lines through Po having slopes 1T14 and -1T14. Clearly, 

the same choice of Rand B as in 6.6 shows that (*) of 

Lemma 5.5 holds for the space H. 

5.8. Remark. Heath's V-space H is homeomorphic to a 

closed subset of the Pixley-Roy space (this also has been 

noticed by D. Lutzer and H. Bennett). Recall that the Pixley-

Roy space A consists of the set of all finite subsets of the 

real line R with the following topology. For each x in A 

and each open set U in the usual topology on R, put [x,U] 

{y E A: x eye U}. The collection of all such [x,U] forms 

a base for the topology on the Pixley-Roy space [PR]. We 

show that H is homeomorphic to Z = {x E A:lxl ~ 2 and x ~ S}. 

Clearly, Z is closed in A. We show that Z is homeomorphic 

to the copy of H obtained by rotating H by 45° in the plane. 

Let H' = {(x,y): x ~ y} with all points (x,y) with x < y 

isolated, and for points (x,x) take as a local base all sets 

of the form 

V«x,x),n) = {(x,y): x ~ y < lin} U {(y,x): x ~ y < lin} 

where 0 < n < w. Clearly H' is homeomorphic to H. Define 

a map f: H' + Z by f«x,x» = {x} and f«x,y» = {x,y} if 

x < y. Since f is one-to-one and f (V ( (x, x), n»= [{ x} , (x-lin, 

x + lin)], it follows that f is the desired homeomorphism. 

5.9. Example. The Pixley-Roy space satisfies (*) of 
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Lemma 5.5. This follows at once from Remark 5.8 because A 

has a closed subspace which satisfies (*) of 5.5. This shows 

that A does not satisfy property D, and this slightly general­

izes the well-known results that A is not pseudonormal, there­

fore neither normal nor countably paracompact (cf.[VD ]).2

Further, this shows that there exists a space Y which is a 

perfect finite-to-one image of A, which does not have .property 

wD. The space A is a hereditarily metacompact Moore space 

(cf. [VD ]), and both these properties are preserved by per­
2 

fect maps [Wo ], [W0 ]. Thus Y is a he~editarily metacompactl 2

Moore space (having the countable chain condition) which does 

not have property wD. 

6. Some New Uses of Property wD 

In this section we show how Example 5.6 and similar 

examples can be used concerning how perfect maps destroy sub­

metrizability and realcompactness. 

Recall that a T3 1/2-space is called realcompact if it 

is homeomorphic to a closed subset of a product of copies 

of the real line. It is easy to see that every product of 

real lines has property wD, and hence every realcompact 

space has property wD (Corollary 4.4b). The fact that real­

compact spaces have property wD has been noted earlier in 

[SA] and [VD ], and it also follows from basic facts about
3

realcompactness and Morita's characterization of property 

wD given in [Mol]. Recall again that a space X with topology 

T is called 8ubmetrizable provided that there exists a 

metrizable topology M on X such that MeT. As we have 

mentioned, every regular, submetrizable space has property 
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wD (Corollary 3.5). It is known that submetrizable T 1/23 

spaces of cardinality c have the following three properties: 

(i) they are realcompact [GJ, 8.17 and 15.24], (ii) they 

have a Go-diagonal (cf. [BL]), and (iii) they have property 

wD (for two reasons). 

We now show that perfect maps can destroy submetriza­

bility by destroying anyone of these three properties. 

6.1. A perfect map defined on a submetrizable space 

which destroys the Go-diagonal, but preserves realcompactness 

and property wD. F. G. Slaughter, Jr. [S] and V. Popov [P] 

have shown that there exists a perfect (2-to-l) map defined 

on the disjoint union of two copies of the Michael line whose 

image does not have a Go-diagonal. Since the image is a 

paracompact space of cardinality c, it is realcompact [K] 

and has property wD. 

6.2. A perfect map defined on a submetrizable space 

which destroys realcompactness, but preserves the Go-diagonal 

and property wD. S. Mrowka [Mr ] , [Mr ] has constructed al 2 

(2-to-l) perfect map, defined on the disjoint union of two 

copies of the Niemytzki plane, whose image is not realcom­

pact. This image does have a Go-diagonal since both the 

domain and range are Moore spaces [Wo 2 ] , and the image has 

property wD by Proposition 5.1. 

6.3. A perfect map defined on a submetrizable space 

which destroys property wD (and therefore realcompactness) 

but preserves the Go-diagonal. Example 5.6 in this paper 

shows that there exists a (finite-to-one) perfect map whose 

domain is the Niemytzki plane and whose image does not have 
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property wD. The image has a Go-diagonal, and of course is 

not realcompact. 

In order to answer several questions of S. Mrowka, 

Akio Kato [Ka ] constructed examples of first countablel 

spaces which show that 

6.4. A space which is the union of a countable, closed 

discrete set and a realcompact set need not be realcompact, 

and 

6.5. There is a finite-to-one perfect map f: X + Y 

which destroys realcompactness and such that 

I{y E Y: If- l 
(y) I ~ 2} I = w. 

The examples constructed in §5, can be used to show that 

both 6.4 and 6.5 hold (Eric van Douwen has informed me that 

R. Pol has also constructed a simple example to show that 

6.4 obtains, but Pol's example is not first countable). Let 

f: N + Y be the finite-to-one perfect map constructed on the 

Niemytzki plane N as in Lemma 6.5. The map f destroys real-

compactness because it destroys property wD. Further, there 

are only countably many y E Y such that If-1 (y) I ~ 2. This 

shows that 6.5 obtains. To see that 6.4 obtains use the 

image space Y. Let A = {y E Y:lf-l(y) I ~ 2} and B Y\A. 

Then A is a countable, closed discrete subspace of Y (Lemma 

5.4) and B is realcompact because it is homeomorphic to a 

subspace of Niemytzki'sspace N. Thus Y = A U B, but Y is 

not realcompact. 

To get analogous examples for 6.4 and 6.5 concerning 

N-compactness instead of realcompactne~s, we use (instead of 
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the Niemytzki plane) Heath's V-space (see Example 6.7) or 

Mrowka's N-compact version of Niemytzki's space [Mr ].2
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