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INCOMPRESSIBLE SPACES

Jo Ford and R. W. Heath

P. Fletcher calls a space incompressible if it admits
no homeomorphism onto a proper subset of itself. All closed
n-manifolds are incompressible for example, while most AR's

are compressible.

I. Unions

In [F,S], Fletcher and Sawyer prove that the disjoint
union of two connected incompressible spaces is again in-
compressible, and they ask if "connected" can be removed.

We show in Theorem 1 that it cannot be removed, and we
generalize their result in Theorem 2. Theorem 3 demonstrates
the importance of the union being disjoint in their hypothe-

sis. All proofs are given in [F,H].

Theorem 1. There exist two incompressible compact metric

spaces whose disjoint union is compressible.

Theorem 2. If, in each of X and Y, the set of compo-
nents i1s discrete, then X and Y incompressible implies that

their disjoint union 18 incompressible.

Theorem 3. There exist two incompressible metric con-
tinua that intersect in exactly one point whose union 18§

compressible.

1I. Products

Fletcher and Sawyer ask, also in [F,S], whether products
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preserve incompressibility. That question has been answered
by L. S. Husch.

In [H] Husch establishes the existence of a three dimen-
sional incompressible metric space whose product with S' is
compressible by an ingenious argument ﬁsing McMillan's un-
countable collection of open contractible subsets of S3 no
two of which are homeomorphic, [M]. In Theorem 4 we construct
two relatively simple one-dimensional incompressible metric
continua whose product is compressible. Infinite products

are usually compressible however, as Theorem 5 demonstrates.

Theorem 4. There exist two l-dimensional incompressible

metric continua whose product is compressible.

Theorem 5. If, for each n, X, 18 a separable metric

. oo . .
space that contains an arc, then Hn=an 18 compressible.

Question l. Does there exist an incompressible infinite

product (where each factor is non-degenerate)?

Note 1. There does exist an infinite~dimensional incom-
pressible metric continuum. Namely, let X = Sl U 52 U o=

is

U {P} where (i) s; N Sj =g if |j-1| > 1, (ii) S; N S;,

a single point for all i, (iii) {s.}._, + p, and (iv) S . is
i‘i=1 21
an i-dimensional sphere‘and each other Sj is a simple closed

curve.

II1. Incompressible AR’s

Clearly, there exist incompressible ANR's of every finite
dimension. In [F,S], the authors observed that the "Dunce's

cap"” is a 2-dimensional incompressible AR and, as pointed out
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by W. R. R. Transue, so is the "House With Two Rooms." This
latter example appears to generalize to all finite dimensions,
and then, using these sets in place of the spheres in Note 1
above, an infinite dimensional incompressible AR could be con-
structed. Surprisingly, there also exists a one dimensional

incompressible AR;

Question 2. Do there exist two incompressible (compact

metric) AR's whose product is compressible?

Note 2. It follows from Theorem 5, that an infinite

product of (non-degenerate) AR's must be compressible.
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