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THE NORMAL MOORE SPACE PROBLEM 

Peter Nyiko8 

1. Background 

Is there an American general topologist who has not 

heard of the normal Moore space problem? The unique position 

this problem has long occupied in our minds may be attributed 

mostly to the unique influence R. L. Moore and his Texas 

school have had on the course of general topology here. Even 

for people who have gone on to other areas of topology, the 

problem seems to have an aura which is not explainable by its 

intrinsic qualities. Had history unfolded otherwise, we 

might be hearing far more about the more general problem of 

whether every first countable normal space is collectionwise 

normal; or about the more special problem of whether every 

normal space with a uniform base is metrizable. However, one 

way or the other, general topologists could not, I believe, 

have helped but become intrigued by this little circle of 

related problems. Why should first countability have any 

bearlng on whether a normal space is collectionwise normal? 

Why is it that the tricks we use to destroy metrizability in 

a space with a uniform base, always seem to destroy normality 

as well? 

The main milestones in the history of the problem give 

us many other things to puzzle over. Right at the very be

ginning, set theory intruded: F. B. Jones, who first posed 

the problem in print [8] in 1937, showed that if one assumes 

2KO 2Kl< , then one can prove that every separable normal 
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Moore space is metrizable. His paper contains the statement, 

so quaint-sounding to our modern ears, that "the author has 

tried for some time without success to prove that 2Kl > 2KO ." 

We have known since 1963 that this natural-seeming axiom is 

actually independent of the usual axioms of set theory. As 

for Jones' result about separable normal Moore spaces, that 

has been known to be independent since 1967. On the topologi

cal side, Bing showed [1] that the existence of a Q-set on 

the real line is sufficient, and Heath [7] that it is neces

sary, for the existence of a separable nonmetrizable normal 

Moore space. On the set-theoretic side, the credit is not so 

easy to assign, and the account in [15, Chapter III] makes one 

wonder just what it means to be the discoverer of a theorem. 

Silver and Solovay are the names most often mentioned in con

nection with the consistency of there being a Q-set; but a 

great deal of the work was already done by Rothberger in 1948 

[12], [15]. And the contributions of Franklin Tall to this 

phase of the problem have yet to be adequately chronicled. 

Once one gets over the shock of set theory intruding into 

the existence of separable nonmetrizable normal Moore spaces, 

the results do arrange themselves rather neatly. The non

separable case is much more chaotic. One would think that 

since the continuum hypothesis (CH) has to be negated so 

strongly to get a separable example, perhaps the assumption 

of CH would destroy all examples; but Shelah has recently shown 

that the existence of a nonmetrizable normal Moore space is at 

least consistent with CH. Still more recently, Devlin and 

Shelah have shown that it is consistent with 0+ GCH. Fleis

sner seemed to be making progress with the stronger axiom 
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V = L, showing [3], [4] that it implies every normal space of 

character <c is cOllectionwise Hausdorff, and we have long 

known: 

Theorem 1. (Bing [1]) A Moore space is metrizable if, 

and only if, it is collectionwise normal. 

It may still turn out that V = L implies every normal 

Moore space is metrizable, but the big breakthrough of which 

I will speak in the next section came at the opposite end of 

the spectrum: an axiom which implies that the cardinality of 

the continuum is so great that the aleph which expresses it 

has a subscript equal to itself (And this is only the begin

ning! See [14] for further details on how big c must be.), 

an axiom which implies the consistency of there being a 

measurable cardinal, and so its own consistency is not prova

ble in ZFC--such is the axiom which I found to imply that 

every normal Moore space is metrizable, and indeed that every 

first countable normal space is collectionwise normal. 

I have already proven an even more general result else

where [11], but I will give a slightly rearranged proof in 

Section 2, because there is a detail in that proof which will 

lead us to a number of set-theoretic statements in Section 4, 

statements implying every first countable normal space is 

collectionwise normal. If one of these could be shown to 

hold in some "nice" model of set theory (that is, a model 

whose consistency follows from that of ZFC) the normal Moore 

space problem would be finally laid to rest. On the other 

hand, if it could be shown that they imply the consistency 

of there being an inaccessible cardinal, then it will become 
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reasonable to try to show "every normal Moore space is metriz

able" implies that also. 

2. What Large Cardinals Can Do 

This section includes a proof that the Product Measure 

Extension Axiom tPMEA) implies every first countable normal 

space is collectionwise normal. This axiom, whose consis

tency was shown by Kunen over five years ago [unpublished 

result!] to follow from the consistency of there being a 

strongly compact [2] cardinal, has to do with the usual meas

ure on the product of two-point sets. In what follows, let 

A be a cardinal number, defined as the set of all ordinals 

whose cardinality <A. I will use the natural correspondence 

between the space of functions, A2 , and the power set P(A), 

to make the argument simpler: with each function one asso

ciates its support, and with each subset of A, one associates 

its characteristic function. Thus a basic clopen subset of 

P(A) will consist of all subsets of A which contain a fixed 

finite subset of A and miss another fixed finite subset, and 

its product measure will be l/2n , where n is the cardinality 

of the union of these two finite sets. We are primarily 

concerned with clopen sets of the form Ba {A c Ala E A} , 

whose measure is 1/2, of the form B - B {A c Ala E A,a S 
S f- A}, whose measure is 1/4, and B 6 B (B - B ) ua S a S 
(B - B ), whose measure is 1/2; and of course ~(P(A)) = 1.

S a 

This measure can be extended in the usual way to all Baire 

subsets of the product space. [6, §S8] 

The Product Measure Extnesion Axiom (PMEA) is that, no 

matter what the cardinality A, this measure can be extended 
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to a c-additive measure ~ defined on all subsets of A2 ~ P(A). 

A measure is called c-additive if the union of fewer than c 

sets of measure 0 is likewise of measure O. Actually, for 

first countable spaces, countable additivity is enough; but 

we cannot escape "large cardinals" by weakening the axiom in 

this way. Solovay has shown [14] that the following two 

axioms are equiconsistent, i.e. if there is a model of one, 

there is a model of the other: 

A. ZFC + "there exists a measurable cardinal" 

B. ZFC + "there exists a countably additive measure l.l 

on the real line R extending Lebesgue measure and defined on 

all subsets of R." 

Now, when A = K ' A2 is homeomorphic to the Cantor set,
O 

and the product measure can be tied together with Lebesgue 

measure by using the Cantor function. So another equivalent 

condition is: 

C. ZFC + "PMEA holds for A = K ' with c.-additivity
O 

weakened to countable additivity." 

The following theorem, coupled with Theorem 1, shows 

that every normal Moore space is metrizable under PMEA. 

Theorem 2. [PMEA] Every first countable normal space 

is collectionwise normal. 

Proof. Let ~ be a countably additive measure, extending 

the measure on P(A) just described, such that l.l(A) exists 

for all A c P(A) . 

Let X be a first countable normal space and let {C I 
a 

a < A} be a discrete collection of closed subsets of X. For 

each A c A, there exist disjoint open subsets U and VA of XA 
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containing U{C la E A} and U{C la f A} respectively, because 
a a 

X is normal and these are disjoint closed sets. 

For each a and each p E C , let {Un(p) }~=l be a base of a 

open neighborhoods at p. Let 

A[p,n] = {A C Alun(p) c UA or Un(p) eVA}. 

Because the Un(p) form a local base, there exists for each 

p E C and each A C A an integer n such that Un(p) C U if a A 

a E A or Un(p) C VA if a ~ A. We will now show, using PMEA: 

Claim. For each a and each p E C , it is possible to 
a

choose an integer n such that, if q E C ' S ~ a, the set p S 
A[p,n ] n A[q,n ] contains a set splitting a from s, i. e. a p q 

set A such that either a E A, S ~ A, or SEA, a ~ A. 

Once the claim in proven, we simply surround each point 

P by the open set U (p) . Then, given any P E C qn p a' E CS' 

S f- a, we have either U (p) C UA' U (q) C VA (if a E A,
n p nq 

S f- A) or Un (p) eVA' Un
(q) c UA (if a f A, SEA) , where 

p q 

A is as in the claim. Then, since U and VA are disjoint, so
A 

are U (p) and U (q) • Now let U = U{U (p) Ip E IfCal · np nq a n p 
a "l- S, we have U n Us = )3, and so we have put the C into a a 

disjoint open sets as desired.Ua' 

Proof of Claim. [This is the only place where PMEA is 

used.] By the statement just before the claim, A[p,n] x ~(A) 

for all p. [The notation is from measure theory; it says 

that A[p,n] c A[p,n+l] for all n and U~=lA[p,n] = ~(A).] 

Hence ~(A[p,n]) ~ 1 by countable additivity. Thus there 

exists n such that ~ (A[p,n ]) > 7/8. If we pick n for all p p p 

p, then ~ (A[p,n ] n A[q,n ]) > 3/4. Suppose p E Ca' q E 
P q C S' 

a ~ S• Because ~(Ba - B
S

) = 1/4, there exists 
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A E A[p,n] n A[q,n] n (B - B(3).
p q a 

But A splits a from (3, as desired. 

Actually, we have done more than prove the claim. We 

have gotten the sets A[p,n ] n A[q,n ] to contain sets split
p q 

ting any given a from any given (3. It would be nice if we 

could show the two tasks are equivalent, because the set-

theoretic reformulations of this second task (see section 4) 

are much simpler than any I have come up with for the first. 

The proof of Theorem 2 made use of the huge variety of 

pairs of disjoint open sets which were available, one pair 

for each element of ~(A). The underlying idea was to pick a 

neighborhood of each point which is contained in some member 

of "enough" pairs, and hence disjoint from the other member. 

The measure gave us a highly quantitative way of interpreting 

"enough." [How often do you see that number 7/8 in a topology 

paper?!] Is there any way of interpreting "enough" which will 

prove the claim, yet bypass the theory of large cardinals? 

That problem is what the rest of this paper centers on. 

3. Haire Category Arguments 

Except for Lemma 1, the material in this section actually 

goes back to the summer of 1976, when I had some fascinating 

discussions about the normal Moore space problem with Mike 

Starbird. Through them, I already realized back then that 

if the claim in Theorem 2 can be made to hold in general, the 

theorem itself would follow. But instead of attacking the 

claim with measures, I looked at a Baire category interpre

tation of a "large enough" subset of A2 . This may explain in 

part why I was so long in thinking about measures: we usually 
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think of "first category" sets and "measure zero" sets about 

on a par with each other, even though neither property implies 

the other on the real line; and since the Baire category re

suIts below are very far from a solution, why should one ex

pect more from measures? What I failed to take into account 

was that measures give us many possible interpretations of 

"large"; being "not of measure zero" is actually one of the 

crudest, and it would not have been enough for Theorem 2. 

Another contributing factor in my blindness was the fact 

that the Baire category arguments below are done in ZFC, and 

in those days I preferred to avoid even simple axioms like 

CH, let alone measurable cardinals. 

Let us begin with a sequence of subsets of A2 , {A(n) }~=l' 

filling up A2 monotonically. By the Baire category theorem 

on the compact space A2 , there is an integer n such that A(n) 

contains a dense subset 0 of some basic clopen set B. The 

elements of B are required to take on the value 0 on a finite 

subset Z of A and the value 1 on another finite subset S; and 

every function that does this will be in B. Because 0 is 

dense in B, it is possible to find a function in 0 which will 

behave any preassigned wayan a finite set of indices in 

A - (Z u S). In particular, if a,S l Z U S, there is a func

tion f E 0 such that f(a) = 1, f(S) 0; the corresponding 

member of ~(A) thus splits a from S. Also, if a E Z U S, 

S ~ Z U S, there is a function f E 0 which behaves on S in 

the opposite way from its behavior on a. The only pairs of 

ordinals that give us trouble are those for which both members 

are in Z, or both in S. These we can split by "climbing a 

little higher," finding an integer m > n such that for any 
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pair a,S E Z, there is an f E A(m) which takes on the value 

1 on a and 0 on Si and similarly for S. 

Of course, this argument does much better than just 

split pairs of ordinals. The following lemma, which will be 

used in Section 4, explores another possibility. Its state

ment and proof are strongly reminiscent of what we did using 

PMEA, except that it has to do with individual A(n) 's instead 

of their pairwise intersections. 

Lemma 1. Let N be a fixed positive integep and let 

{A(n) }~=l be a sequence of subsets of A2 such that A(n)?f A2. 

Thepe exists an integep m such that A(m) contains functions 

f satisfying any set of N OP fewep conditions of the fopm 

f(a) = 1, f(S) = 0 which ape not mutually contpadictopy. 

In othep wopds, A(m) meets evepy basic clopen set of 

ppoduct measupe ~ 1/2
N 

. 

Ppoof. Let the product (Haar) measure be defined on 

all Borel sets [6, §58]. Since A(n) ?f A2 , we have A(n) ?f A2 

also, and ~(ATffif) + 1. pick m such that ~(A(m)) > 1-1/2
N

. 

Now A(m) meets every open set which ATffif does, and ATffif meets 

N 
every Borel open set of measure ~ 1/2 . 

[There are also purely combinatorial and topological 

proofs of this lemma. The shortest I know was suggested by 

van Douwen: suppose that for each n, there exists a basic 

clopen set U such that A(n) n U =~, ~(U ) > 1/2N. Without 
n n n 

loss of generality, we may assume each Un is restricted in a 

set F of exactly k coordinates for some k < N. Since these 
n 

sets of coordinates are of the same (finite) cardinality, the 

usual ~-system argument, which would ordinarily require 
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uncountably many finite sets, goes through: there is a quasi

disjoint subfamily {Fni}:=l [9, Appendix Al. Take any func

tion f which agrees with Un' on F .; these conditions do not n1 1 

conflict with one another, and so f E n°O lU . But this con
n= ni 

tradicts A(n) ~ A2 .] 

As we bring other sequences into the picture, we have to 

sharpen our tools. Two dense subsets of the same basic clopen 

set can easily be disjoint, and what is needed is the "iter

ated" Baire category theorem: 

Lemma 2. Let X be a compact T space~ and let X = 2 

U
OO 

lA. Then there exists an n such that A is not the union n= n n 

of countably many nowhere dense subsets of x. 

The proof is trivial, and the lemma enables us to take 

care of any countable collection of sequences filling up A2 . 

For our first sequence, which I will suggestively label 

{A[l,n]}:=l' we pick n l so that A[I,nV is not the union of 

countably many nowhere dense sets, and in addition contains 

sets splitting any two elements of A. For the next sequence, 

pick n so that A[2,n ] is not the union of countably many2 2 

nowhere dense sets; and so that, in addition, its intersec

tion with A[l,nl ] is dense in some basic open subset of A2 

and contains functions splitting any two elements of A. [AS 

before, all but finitely many pairs of elements are split 

merely because of the density of the intersection in some 

basic open set.] 

In general, for the kth sequence {A[k,n]}~=l' pick nk 

such that A[k,n ] is not the union of countably many nowherek 
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dense subsets of A2 ; such that, in addition, A[k,nk ] n 
A[i,n.] is dense in some basic open subset of A2 for any 

1. 

i < k; and such that each of these k - I intersections also 

contains functions splitting any a from any S. 

However, even though we can choose n for all k so thatk 

A[i,n.] n A[j,n.] contains functions splitting any a from 
1. J 

any 8, there is no way we can be sure of adding an w-th 

sequence. It may even be that for any fixed n, A[w,n] n 
A[k,nk ] "works" for only finitely many k. True, we can 

always include this new sequence by re-numbering all the 

sequences using only the finite ordinals; but this means giving 

up all hope of extending the induction out to wI. And in fact~ 

we cannot get out to wI in ZFC: if we use one of the "con

sistent" nonmetrizable normal Moore spaces of cardinal wI to 

guide us in our definition of {A[a,n]}:=l for each countable 

a, all hope of defining n cleverly enough evaporates.
a 

Even if we use models of set theory where nonmetrizable 

normal Moore spaces are unknown, Lemma 2 just does not seem 

to be strong enough. This is suggested, though not rigorously, 

by the fact that the very axiom which seems to give us the 

largest subsets of A2 via a Lemma 2 route, also gives us non

metrizable normal Moore spaces of cardinal wI! I am referring 

to MA + 'CH, which tells us that a compact T space satisfying2 

ccc (as does A2 , for all A) is not the union of fewer than c 

nowhere dense sets. 

So in the next section we will turn to another way of de

fining "large enough" subsets, but we will also make some use 

of the work in this section. 
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4. Linked Systems 

The material in this section also predates Theorem 2, 

but by only a few days. It involves turning our intuition 

upside down: instead of thinking of climbing high enough on 

sequences that fill up A2 , we think of setting up a system of 

subsets of A2 which does not let any sequence filling up A2 

slip through. This inversion was inspired by a paper of 

S. Mrowka [10]. In this paper, Mrowka attempted to construct 

first countable compact T spaces of arbitrarily large non
l 

measurable cardinal. Unfortunately, as I. Juhasz observed, 

the convergence structure defined in that paper need not be 

topological. In fact, it remains a fascinating unsolved 

problem whether there is a first countable compact Tl space 

of cardinal >c. (The corresponding problem for T2 spaces re

mained unsolved for fifty years before Arhangel'skii showed 

the answer is no!) 

At any rate, the following result of Mrowka's is valid: 

Lemma 3. Let A be a nonmeasurable cardinal. For each 

00 A A Asequence A = {A(n)}n=l of subsets of 2 such that (n) x 2, 

let nA be a positive integer. No matter what the choice 

of nA' there will be a finite collection Al, ••• ,An of se

quences such that Al(nAl) n ••• n An (nAn) is finite. 

The proof is extremely simple: suppose it were possible 

to choose nA for each A so that every finite intersection of 

sets A(nA) is infinite. Let f be the collection of all sets 

of the form A(nA)' and let lj be any free ultrafilter contain

ing f. Then every ascending sequence of subsets of A2 whose 

union is A2 contains a member of r, hence of U, so that U has 
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the countable intersection property. 

This result seems tantalizingly close to negating the 

strengthened version of the claim in the proof of Theorem 2-

the one that was actually proven, as pointed out at the end 

of Section 2. If we could just find a pair of sequences 

whose chosen terms have finite intersections, then that inter

section could not possibly contain functions splitting any 

pair a,S. An infinite collection is needed for that, and the 

necessary size increases as A does, although log (A) is an 

a d equate Slze 2 contalns a ense su space 0 car lna K.,[K2 , d b f d' 1 ] 

Now, just as the negation of Lemma 3 leads to a free 

ultrafilter on A2 with the c.i.p., so the negation of the 

statement that there is a pair Al ,A such that ~(nAl) n
2 

A2 (nA2) is finite will lead to a free maximal linked system 

L which "catches every ascending sequence that fills up A2 ... 

(A collection of sets is a linked system if any pair has 

nonempty intersection.) Actually, maximality is immaterial: 

once we have a linked system which "catches" all such se

quences, any maximal system to which it is extended will do 

the same. 

We have a beautiful theory of how large a set must be to 

admit a free ultrafilter with the c.i.p., much of it going 

back to Ulam's 1930 paper [16]. Can we work out a similar 

theory for maximal linked systems which "catch every ascend

ing sequence which fills up the set," and such that every 

binary intersection is infinite? As far as I know, no one 

has done SOi some Dutch topologists have worked very success

fully with linked systems in constructing supercompactifica

tions, but they do not seem to have gotten around to such a 
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study. 

It is not yet clear how much bearing such a study would 

have upon the normal Moore space problem. All that is clear 

right now is that in a model whe~e no such linked system 

exists, the strengthened version of the claim in Theorem 2 

fails; but the claim itself allows finite binary intersec

tions, so such a study might not have any bearing on the 

claim. Even if it could destroy the claim in "all reasonable 

models" of set theory, it would "only" give us a metacompact 

Moore space with a normalized collection of closed subsets 

that cannot be put into disjoint open sets, but the space we 

have available now would not be normal in such a case. This 

is the space TA of Rudin and Starbird, as a close look at the 

construction will show [13]. In an upcoming paper I will 

give a detailed proof of this, as well as a normal Moore 

space whose condition for ~eing metrizable bears at least a 

superficial resemblance to the claim in Theorem 2 (but is, 

of course, eve~ less demanding). To negate that condition 

in "all reasonable models" of set theory would be to settle 

the normal Moore space problem--but that is three steps re

moved from where we are now. 

The other possibility is that such a linked system can 

be constructed in a "reasonable" model of set theory. But 

this in itself is even less satisfactory, because the claim 

in the proof/of Theorem 2 is very specific about what is to 

be found in each binary intersection, and it gets more demand

ing with increasing values of A. What is needed is a more 

highly structured linked system, and that is what will be 

described below. 



TOPOLOGY PROCEEDINGS Volume 3 1978	 487 

Let us suppose we could find, for a given A, an assign

ment such as in the strengthened version of the claim. To 

put it one way: 

Property 1. For each sequence A = {A(n) }~=l of subsets 

of 
A

2 such that A(n) ~ 
A
2, there is an assignment nA of a 

positive integer such that for any a,S E A, a ~ S, and any 

pa1"r. of sequences Al 
.,. A2 

, the set Al 
(nAl) n A2 

(nA2) n (Ba ~ BS) 

is nonempty. 

Then it would follow that the sets of the form A(nA) and 

(B l1 BS) form a linked system which "catches every ascending
a 

sequence that fills up A2 ." We can tidy up this system by 

pushing nA up enough to include the function X
A 

which sends 

every point of A to 1. In this way the sets B can be added 
a 

to the system, leaving it linked. [Automatically, such inter

sections as B n (B l1 B ) and (B l1 B ) n (B l1 B ) are non
a A o a S A o

empty as long as a ~ S, y ~ 0.] Also, all triple intersec

tions involving only sets of the form A(nA) or B
S 

are non

empty. Thus Property 1 gives rise to: 

Property 2. There exists a linked system A of subsets 

of a set X and a subcollection r of A such that: 

(i) Irl A 

(ii) For all distinct B ,B E r, B ~ B E A.l 2 l 2 

(iii)	 For each sequence {A(n)}~=l of subsets of X satisfy

ing A(n) ~ X, there exists n such that A(n) E A. 

(iv) Ll n L2 n L3 ~ ~ for all L E A, with the possiblei 

exception of when two or more are of the form B or 
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The first two conditions can be thought of as an index 

of how badly A fails to be a filter subbase--clearly, if 

Bl ~ B E A, then B n B cannot be added to A without de
2 l 2 

stroying linkedness. The possible exceptions in the fourth 

condition encompass this obvious case B n B n (B ~ B ) asl 2 l 2 

well as the less obvious (B ~ B2 ) n (B ~ B ) n (B ~ B ),l 2 3 3 l 

both of which are empty by pure Boolean algebra. They also 

encompass cases where one of the terms is not of the special 

r-form. However, the A(n} mentioned in Property 1 can always 

be pushed high enough, through the use of Lemma 1, to make 

all such ternary intersections nonempty. So we can replace 

(iv) by a more elegant condition which makes A as close to 

being triply linked as (ii) allows: 

( ~v+) L n L n L ~ a f ~~ . v 1 2 3 r p or a~~ L E A, except t-n casesi 

involving the abstract algebraic identities B n
l 

B n (B ~ B ) = ~ and (B ~ B ) n (B ~ B ) n2 l 2 l 2 2 3

(B3 ~ Bl ) = ~, with B E r for all i.i 

It is these fourth conditions that make Property 2 

special. One can easily get a maximal linked system satis

fying the first 'three by letting X = A2 , r {B la < A}, and 
a 

including a set in A if it either contains a set of the form 

B or B ~ B ' or meets all such sets and in addition cona a S 

tains the function XA• Of course, this last detail makes 

this a degenerate example, resembling fixed ultrafilters 

more closely than free ones: there are plenty of pairs in 

A that have only XA in common. 

To get from Property 2 back to Property 1, we use a very 

familiar kind of transformation. With X, r, and A as in 
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Property 2, let r be arranged in a A-sequence, r = {B la < A}.
a 

Let ~ be the function from X to A2 whose a-th coordinate is 

1 or 0 depending on whether x E B or not. [Of course, some 
a 

points of A2 might have more than one preimage in X while 

others have none.] Then ~-l(B ) = B for all a, and simi
a a 

larly for B ~ B • For each sequence {A(n)}~=l such that 
u S

A(n) ~ A2 , let nA be the least integer such that ~-l(A(nA)) 
-1is in Ai such an nA always exists because ~ (A(nA)) ~ X. 

Because of (iv) and the preservation of intersection under 

preimages, Property 1 is satisfied. 

We did not use the full force of (iv) in the above, but 

could have gotten by with, e.g. 

-(iv ) If neither L nor L is in r, nor of the form B ~ B'1 2 

with B, B' E r, then any set of the form L n L nl 2 

(B ~ B ) (where L. E A, E r for i = 1,2) is
l 2 1 

Bi 

nonempty. 

Of course, numerous other variations on (iv) are possi

ble, but all seem to have the esthetic defect that A need not 

be a maximal linked system. But this may actually be an 

advantage as far as constructing such A's in some model of 

set theory is concerned, and the significance of such a con

struction lies in: 

Theorem 3. Let M be a model of set theory in which Pro

perty 2 holds. Then every first countable normal space in M 

is A-collectionwise normal. If Property 2 holds in M no 

matter what the choice of A, then every first countable nor

mal space in M is collectionwise normal. 
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Proof. Property 2 implies Property 1, which implies 

the truth of the claim in Theorem 2. 

5. Personal-historical Note 

One might think that the word "measurable" in Mrowka's 

theorems [10] was enough to tip me off to the use of product 

measures, especially since I had reviewed much of the material

in Section 3 a few days earlier, and more yet in the days 

following. However, I was so mesmerized by the idea of 

strengthening Lemma 3 to pairwise intersections that the 

literal meaning of the word "measurable" did not register; 

whenever I did think along those lines for the next nine 

days, I always thought in terms of {O,l}-valued measures. 

Moreover, there were all kinds of other promising avenues to 

investigate. 

What finally got me going on the right track was a 

closer look at the usual proof that if A does not support a 

countably additive {O,l}-valued measure, neither does 2 A 

[16, [5, p. 165]. On the same day lid read Mr6wka ' s papers, 

I had looked at this proof and seen that it did not go through

for maximal linked systems. Now, ten days later, I focused 

on the way that proof used those subsets B of the product
a 

set A2 . I got to wondering which clopen subsets of, say, the 

Cantor set w2 would have to belong to a maximal linked system.

Once I realized that it need not contain any sets of measure 

<1/2, there was no holding me back from the conjecture that 

PMEA was true for A = wI and hence that it implies every first

countable normal space is wl-collectionwise normal. 

There I got stuck for one more day, being misled by the 
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following folklore "theorem": 

"Every cardinal K > C on which there is a real-valued 

measure is ({O,l}-valued) measurable." 

Now there is a valid theorem which set theorists are 

fond of phrasing this way, assuming everyone knows that the 

qualifier "K-additive" is to be understood. (Of course, all 

needed for first countable spaces was countable additivity.) 

After searching in vain for this exact "theorem" but finding 

its correctly stated counterpart, I suddenly realized that 

one could simply take a subset A of cardinal c for any set 

B of cardinal ~c, define (if possible) a real-valued measure 

on all subsets of A, and then let the measure of each subset 

of B be the measure of its trace on A. 

A drawback of this trick is that such a measure could 

not possibly extend the product measure on A2 when A > 2 c . 

This is because A2 has the collection {B la < A} of subsets 
a 

such that B ~ BS has positive measure for a ~ S. If a 
a 

measure is concentrated on a set of cardinal c, no such col

lection can be of cardinal >2 c . 

Incidentally, it seems more logical to me to define a 

"real-valued measurable cardinal" to be one on which there is 

a countably additive measure defined for every subset, such 

that every subset of smaller cardinal is of measure O. It 

would make the long stretch between c and the first Ulam

measurable cardinal so much more interesting. 

As it was, none of the printed sources I saw gave any 

indication that real-valued measurable cardinals in this 

"reformed" sense existed, even assuming any current large 

cardinal axiom. So, when I wrote to Mary Ellen Rudin on 
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Nov.	 20, 1977, I put most of my emphasis on cardinals ~2c, 

just	 mentioning the possibility of PMEA holding in some model 

as a	 conjecture and then backtracking, "Maybe I'd better not 

even	 call this a conjecture--it's too wild a thought--but if 

it is	 true, then it is true that in that model, every 1st 

countable normal space is collectionwise normal." 

But Mary Ellen showed the letter to Ken Kunen, and 

everything fell into place. 
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