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A TECHNIQUE FOR PROVING INEQUALITIES 

IN CARDINAL FUNCTIONS 

R. E. Hodel 

Introduction 

Let d, L, c, s, X andW denote the following standard 

cardinal functions: density, Lindelof degree, cellularity, 

spread (= hereditary cellularity), character, and pseudo-

character. (For definitions, see [7J or [14].) The fol­

lowing inequalities are basic in the theory of cardinal 

invariants: (1) if X is Hausdorff, then Ixi ~ 2c (X)X(X); 

(2) if X is T then Ixi ~ 2s (X)w(X); (3) if X is Hausdorff,
l

, 

then d(X) ~ 2s (X); (4) if X is Hausdorff, then IXI ~ 2 2S (X); 

(5) if X is Hausdorff, then IXI ~ 2L (X)X(X). (See [11] and 

[1].) Partition calculus and ramification arguments are 

used in the original proofs of these five inequalities. 

(See [8] and [9].) Specifically, the 'Erdos-Rado theorem 

(i< )+ ~ (K +): is used in the proof of (1) and- (2), the Erdos 

theorem K + k,w)2 ,is used in the proof of (3), the Erdos-

Rado theorem (2 2 
K

) 
+ 

~ (K+)3 is used in the proof of (4), and 
K 

in proving (5) Arhangel'skii uses a difficult ramification 

argument to construct a free sequence of length .K+. 

In [16] sapirovskii proved' a fuhdamental theorem about 

the cardinal function s, and from this theorem one easily 
s(X) 2s (X)

obtains the two inequalities d(X) ~ 2 and Ixi ~ 2 

Pol [15] has modified Sapirovskii's technique to give proofs 

of the two inequalities IXI ~ 2c (X)X(X) and Ixi ~ 2L (X)X(X), 

and I have used this technique to prove the inequality 
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Ixl ~ 2 s (X)W(X). In summary, the work of Pol and sapirovskil 

gives an alternate, unified approach to the five inequalities 

stated above. 

The point I would like to emphasize in this paper is 

that the Pol-Sapirovskii technique plays a fundamental, uni­

fying role in the theory of cardinal invariants and can be 

used to prove a wide variety of cardinal function inequali ­

ties. Specifically, I will illustrate their technique by 

proving that every Xl-compact space with a Go-diagonal has 

cardinality at most 2w• The generalized version of this 

inequality is due to Ginsburg and Woods [10]; their proof 

uses the Erdos-Rado theorem (2 K) + -+ (K +) 2 • In addition, I 
K 

will survey several other inequalities in cardinal functions,
 

each of which can be proved using the pol-sapirovskii tech­

nique.
 

The Technique Illustrated 

In order to take advantage of well known terminology, 

I will just prove the countable version of the Ginsburg-

Woods inequality. (The proof I giv~can easily be extended 

to higher cardinality.) The following notation is used: 

if X is a set, ~ is a cover of X, and D is a subset of X, 

then st(~,~) = U{st(x,~): x £ D}. Recall that a space is 

Xl-compact if every uncountable subset has a limit point. 

Lemma. Let X be a Tl-space which is Xl-compact, let
 

~ be an ~pen cover of X, let C ~ X. Then there is a count­

abl~ subset D of C such that C ~ st(D,~).
 

Proof. Suppose false. Construct a subset E = {xa: 

o ~ a < wI} of C such that for all a < wI' x i US<ast(XS'~).a 
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Let p be a limit point of E, and let G be a member of § 

such that p belongs to G. Since p is a limit point of E 

and X is Tl , there exists a and S, a > S, such that x and 
a 

X s belong to G. This contradicts x i US<ast(xS'~). a 

Theorem (Ginsburg and Woods). Let X be an Xl-compact 

eth G de "1 Then Ixi _< 2w •space ~~ a 0- ~agona~. 

Proof. Since X has a Go-diagonal, there is a countable 

sequence §l' §2' ... of open covers of X such that if p and 

q are any two distinct points in X, then for some n < w, 

q i st(p'§n). (See [4].) Construct a sequence {E : 
a 

2wo ~ a < wl~ of subsets of X such that (1) lEal ~ , 

o ~ a < wI; (2) for 1 ~ a < wI' if {D : n < w} is a countable n 

collection of countable subsets of US<aES' and Un=~st(Dn'§n) 

~ X, then En - U:=lst (D ,Y ) ~ ~.n n 

Let E = U E; since lEI ~ 2w, the proof is complete
a<w l a 

if we can show that E = X. Suppose not, and let p £ X, 

piE. For each n < w let C {x: x £ E, P i st(x'§n)};n 
00 

clearly E = For each n < w, apply the Lemma toUn=lCn · §n 

and C : there is a countable subset D of C such that n n n 

en ~ st(Dn,yn )· Note that E ~ U:=lst(Dn,yn ) and 

p i U:=lst(Dn'~n)· Now choose a < wI such that Un=lD ~ n 

US<aES. By (2), there is some q in E such that q i a 

U:=lst(Dn,yn). This contradicts E ~ U:=lst(Dn,yn). 

Survey of Other Inequalities 

First we need some definitions. For a T space X,l 

the point separating ~eight of X, denoted psw(X), is the 

smallest infinite cardinal K such that X has a separating 

open cover 5 with the property that every point of X is in 
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at most K members of 5. (The cover 5 is sepapating if 

given any two distinct points p and q in x, there is some 

S ~n 5 such that p £ S, q is.) If psw(X) = w, we say that 

X has a point-countable sepapating open covep. The extent 

of X, denoted e(X), is the smallest infinite cardinal K such 

that every closed, discrete subset of X has cardinality at 

most K. (See [7], [13]). Note that for a T space X,l 

e(X) = w if and only if X is Xl-compact. The weak Lindelof 

numbep of X, denoted wL(X), is the smallest infinite cardi­

nal K such that every open cover of X has a subcollection 

of cardinality ~ K whose union is dense in X. Note that 

wL(X) S L(X) and wL(X) ~ c(X). If wL(X) = w, we say that 

X is weakly LindeZof. 

Each of the following inequalities can be proved using 
v v 

the Pol-Sapirovskii technique. (1) If X is Tl , then Ixi ~
 

2e (X)psw(X). (2) If X is T , then Ixi ~ psw(X)L(X)~(X).
 
l 

(3) If X is normal and T
l 

, then Ixl ~ 2wL (X) X (X). (See [3], 

[5], and [2] respectively.) 

The countable version of (1) states that an Xl-compact 

space with a point-countable separating open cover has car­

dinality at most 2w• (In fact, the number of compact sub­

sets has cardinality at most 2w.) This result should be 

compared with the Ginsburg-Woods inequality. Two proofs of 

(1) are given in [3]; the first uses an intersection theorem   

of Erdos and Rado while the second proof uses the Pol­

sapirovskii technique. (This second proof is also closely 

r~lated to a construction due to M. E. Rudin [6].) 

Arhangel'skil has asked if every Lindelof Hausdorff 
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space with countable pseudo-character has cardinality at 

2wmost , and (2) gives a partial answer to this question. 

Specifically, the countable version of (2) states that a 

Lindelof space having countable pseudo-character and point 

separating weight at most 2w has cardinality at most 2w• 

The	 countable version of (3) states that a weakly 

Lindelof first countable Hausdorff space which is also nor­

mal	 has cardinality at most 2w• Except for the ~ormality 

assumption, inequality (3) unifies the two inequalities 

Ixi ~ 2c (X)X(X) and Ixi ~ 2L (X)X(X). 

The reader is referred to [2], [5], [15], and [17] for 

additional inequalities in cardinal functions which can be 
v v 

proved using the Pol-Sapirovskii technique. 
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