TOPOLOGY PROCEEDINGS

Volume 4, 1979

Pages 115-120

http://topology.auburn.edu/tp/

A TECHNIQUE FOR PROVING INEQUALITIES IN CARDINAL FUNCTIONS

by

R. E. Hodel

Topology Proceedings

Web: http://topology.auburn.edu/tp/

Mail: Topology Proceedings

Department of Mathematics & Statistics Auburn University, Alabama 36849, USA

 $\textbf{E-mail:} \quad topolog@auburn.edu$

ISSN: 0146-4124

COPYRIGHT © by Topology Proceedings. All rights reserved.

A TECHNIQUE FOR PROVING INEQUALITIES IN CARDINAL FUNCTIONS

R. E. Hodel

Introduction

Let d, L, c, s, χ and ψ denote the following standard cardinal functions: density, Lindelöf degree, cellularity, spread (= hereditary cellularity), character, and pseudocharacter. (For definitions, see [7] or [14].) The following inequalities are basic in the theory of cardinal invariants: (1) if X is Hausdorff, then $|X| \le 2^{C(X)\chi(X)}$; (2) if X is T_1 , then $|X| \le 2^{s(X)\psi(X)}$; (3) if X is Hausdorff, then $d(X) \le 2^{s(X)}$; (4) if X is Hausdorff, then $|X| \le 2^{2^{s(X)}}$; (5) if X is Hausdorff, then $|X| \le 2^{L(X)\chi(X)}$. (See [11] and [1].) Partition calculus and ramification arguments are used in the original proofs of these five inequalities. (See [8] and [9].) Specifically, the Erdös-Rado theorem $(2^{\kappa})^{+} \rightarrow (\kappa^{+})^{2}_{\kappa}$ is used in the proof of (1) and (2), the Erdős theorem $\kappa \rightarrow (\kappa, \omega)^2$ is used in the proof of (3), the Erdős-Rado theorem $(2^{2^{\kappa+1}})^{3}$ is used in the proof of (4), and in proving (5) Arhangel'skii uses a difficult ramification argument to construct a free sequence of length κ^+ .

In [16] Sapirovskii proved a fundamental theorem about the cardinal function s, and from this theorem one easily obtains the two inequalities $d(X) \le 2^{s(X)}$ and $|X| \le 2^{2^{s(X)}}$. Pol [15] has modified Šapirovskii's technique to give proofs of the two inequalities $|x| \le 2^{c(X)\chi(X)}$ and $|x| \le 2^{L(X)\chi(X)}$, and I have used this technique to prove the inequality

116 Hodel

 $|X| \le 2^{s(X)\psi(X)}$. In summary, the work of Pol and Šapirovskii gives an alternate, unified approach to the five inequalities stated above.

The point I would like to emphasize in this paper is that the Pol-Šapirovskii technique plays a fundamental, unifying role in the theory of cardinal invariants and can be used to prove a wide variety of cardinal function inequalities. Specifically, I will illustrate their technique by proving that every χ_1 -compact space with a G_δ -diagonal has cardinality at most 2^ω . The generalized version of this inequality is due to Ginsburg and Woods [10]; their proof uses the Erdös-Rado theorem $(2^K)^+ \to (k^+)^2_K$. In addition, I will survey several other inequalities in cardinal functions, each of which can be proved using the Pol-Šapirovskii technique.

The Technique Illustrated

In order to take advantage of well known terminology, I will just prove the countable version of the Ginsburg-Woods inequality. (The proof I give can easily be extended to higher cardinality.) The following notation is used: if X is a set, $\mathcal G$ is a cover of X, and D is a subset of X, then $\operatorname{st}(D,\mathcal G)=\operatorname{U}\{\operatorname{st}(x,\mathcal G)\colon x\in D\}$. Recall that a space is $\chi_1\text{-}compact$ if every uncountable subset has a limit point.

Lemma. Let X be a T_1 -space which is χ_1 -compact, let \mathcal{G} be an open cover of X, let $C\subseteq X$. Then there is a countable subset D of C such that $C\subseteq \mathrm{st}(D,\mathcal{G})$.

Proof. Suppose false. Construct a subset $E = \{x_{\alpha}: 0 \le \alpha < \omega_1\}$ of C such that for all $\alpha < \omega_1$, $x_{\alpha} \not\in \cup_{\beta < \alpha} st(x_{\beta}, \mathcal{G})$.

Let p be a limit point of E, and let G be a member of $\mathcal G$ such that p belongs to G. Since p is a limit point of E and X is T_1 , there exists α and β , $\alpha > \beta$, such that $\mathbf x_\alpha$ and $\mathbf x_\beta$ belong to G. This contradicts $\mathbf x_\alpha \not\in \mathsf U_{\beta < \alpha}\mathsf{st}(\mathbf x_\beta, \mathcal G)$.

Theorem (Ginsburg and Woods). Let X be an $\chi_1\text{-compact}$ space with a $G_\chi\text{-diagonal}.$ Then $|X|\leq 2^\omega.$

Proof. Since X has a G_{δ} -diagonal, there is a countable sequence \mathcal{G}_1 , \mathcal{G}_2 , ... of open covers of X such that if p and q are any two distinct points in X, then for some n < ω , $q \not\in st(p,\mathcal{G}_n)$. (See [4].) Construct a sequence $\{E_{\alpha}: 0 \leq \alpha < \omega_1\}$ of subsets of X such that (1) $|E_{\alpha}| \leq 2^{\omega}$, $0 \leq \alpha < \omega_1$; (2) for $1 \leq \alpha < \omega_1$, if $\{D_n: n < \omega\}$ is a countable collection of countable subsets of $U_{\beta < \alpha}E_{\beta}$, and $U_{n=1}^{\infty}st(D_n,\mathcal{G}_n) \neq X$, then $E_{\alpha} = U_{n=1}^{\infty}st(D_n,\mathcal{G}_n) \neq \emptyset$.

Let $E = \bigcup_{\alpha < \omega_1} E_{\alpha}$; since $|E| \le 2^{\omega}$, the proof is complete if we can show that E = X. Suppose not, and let $p \in X$, $p \not\in E$. For each $n < \omega$ let $C_n = \{x \colon x \in E, p \not\in st(x, \mathcal{G}_n)\}$; clearly $E = \bigcup_{n=1}^{\infty} C_n$. For each $n < \omega$, apply the Lemma to \mathcal{G}_n and C_n : there is a countable subset D_n of C_n such that $C_n \subseteq st(D_n, \mathcal{G}_n)$. Note that $E \subseteq \bigcup_{n=1}^{\infty} st(D_n, \mathcal{G}_n)$ and $p \not\in \bigcup_{n=1}^{\infty} st(D_n, \mathcal{G}_n)$. Now choose $\alpha < \omega_1$ such that $\bigcup_{n=1}^{\infty} D_n \subseteq \bigcup_{\beta < \alpha} E_{\beta}$. By (2), there is some q in E_{α} such that $q \not\in \bigcup_{n=1}^{\infty} st(D_n, \mathcal{G}_n)$. This contradicts $E \subseteq \bigcup_{n=1}^{\infty} st(D_n, \mathcal{G}_n)$.

Survey of Other Inequalities

First we need some definitions. For a T_1 space X, the *point separating weight* of X, denoted psw(X), is the smallest infinite cardinal κ such that X has a separating open cover S with the property that every point of X is in

118 Hodel

at most κ members of S. (The cover S is separating if given any two distinct points p and q in X, there is some S in S such that $p \in S$, $q \not\in S$.) If $psw(X) = \omega$, we say that X has a point-countable separating open cover. The extent of X, denoted e(X), is the smallest infinite cardinal κ such that every closed, discrete subset of X has cardinality at most κ . (See [7], [13]). Note that for a T_1 space X, $e(X) = \omega$ if and only if X is X_1 -compact. The weak Lindelöf number of X, denoted wL(X), is the smallest infinite cardinal κ such that every open cover of X has a subcollection of cardinality K whose union is dense in K. Note that wL(K) K is weakly Lindelöf.

Each of the following inequalities can be proved using the Pol-Šapirovskii technique. (1) If X is T_1 , then $|X| \le 2^{e(X)psw(X)}$. (2) If X is T_1 , then $|X| \le psw(X)^{L(X)\psi(X)}$. (3) If X is normal and T_1 , then $|X| \le 2^{wL(X)\chi(X)}$. (See [3], [5], and [2] respectively.)

The countable version of (1) states that an χ_1 -compact space with a point-countable separating open cover has cardinality at most 2^{ω} . (In fact, the number of compact subsets has cardinality at most 2^{ω} .) This result should be compared with the Ginsburg-Woods inequality. Two proofs of (1) are given in [3]; the first uses an intersection theorem of Erdős and Rado while the second proof uses the Pol-Šapirovskii technique. (This second proof is also closely related to a construction due to M. E. Rudin [6].)

Arhangel'skii has asked if every Lindelöf Hausdorff

space with countable pseudo-character has cardinality at most 2^{ω} , and (2) gives a partial answer to this question. Specifically, the countable version of (2) states that a Lindelöf space having countable pseudo-character and point separating weight at most 2^{ω} has cardinality at most 2^{ω} .

The countable version of (3) states that a weakly Lindelöf first countable Hausdorff space which is also normal has cardinality at most 2^{ω} . Except for the normality assumption, inequality (3) unifies the two inequalities $|x| \leq 2^{\mathbf{C}(X)}\chi(X)$ and $|x| \leq 2^{\mathbf{L}(X)}\chi(X)$.

The reader is referred to [2], [5], [15], and [17] for additional inequalities in cardinal functions which can be proved using the Pol-Šapirovskii technique.

References

- 1. A. V. Arhangel'skii, The cardinality of first countable bicompacta, DAN SSSR 187 (1969), 967-970.
- M. Bell, J. Ginsburg and G. Woods, Cardinal inequalities for topological spaces involving the weak Lindelöf number, Pacific J. Math. 79 (1978), 37-45.
- 3. D. K. Burke and R. E. Hodel, On the number of compact subsets of a topological space, Proc. Amer. Math. Soc. 58 (1976), 363-368.
- 4. J. G. Ceder, Some generalizations of metric spaces, Pacific J. Math. 11 (1961), 105-126.
- 5. A. Charlesworth, On the cardinality of topological spaces, Proc. Amer. Math. Soc. 66 (1977), 138-142.
- 6. H. H. Corson and E. Michael, Metrizability of certain countable unions, Illinois J. Math. 8 (1964), 351-360.
- 7. R. Engelking, General Topology, Warsaw, 1977.
- 8. P. Erdös and R. Rado, A partition calculus in set theory, Bull. Amer. Math. Soc. 62 (1965), 427-489.
- 9. _____, Intersection theorems for systems of sets,
 J. London Math. Soc. 35 (1960), 85-90.

120 Hodel

10. J. Ginsburg and G. Woods, A cardinal inequality for topological spaces involving closed discrete sets, Proc. Amer. Math. Soc. 64 (1977), 357-360.

- 11. A. Hajnal and I. Juhász, Discrete subspaces of topological spaces, Indag. Math. 29 (1967), 343-356.
- 12. R. E. Hodel, New proof of a theorem of Hajnal and Juhász on the cardinality of topological spaces, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 24 (1976), 999-1000.
- 13. _____, On a theorem of Arhangel'skii concerning
 Lindelöf p-spaces, Can. J. Math. 27 (1975), 459-468.
- 14. I. Juhász, Cardinal functions in topology, Math. Centr. Amsterdam, 1971.
- R. Pol, Short proofs of two theorems on cardinality of topological spaces, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 22 (1974), 1245-1249.
- 16. B. Šapirovskii, Discrete subspaces of topological spaces. Weight, tightness and Souslin number, DAN SSSR 202 (1972), 779-782.
- 17. _____, Canonical sets and character. Density and weight in compact spaces, Soviet Math. Dokl. 15 (1974), 1282-1287.

Duke University

Durham, North Carolina 27706