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A TECHNIQUE FOR PROVING INEQUALITIES
IN CARDINAL FUNCTIONS

R. E. Hodel

Introduction

Let d, L, ¢, s, x and ¢y denote the following standard
cardinal functions: density, Lindeldf degree, cellularity,
spread (= hereditary cellularity), charaéter, and pseudo-
character. (For definitions, see [7] or Il4].) The fql—
lowing inequalities are basic in the theory of cardinal
invariants: (1) if X is Hausdorff, then |x| < ZC(X)X(X);
(2) if X is 7, then |x| £ 25V (3) 4f x is Hausdorff,
then d(X) = ZS(X); (4) if X is Hausdorff, then |X| = zzs(X);
(5) if X is Hausdorff, then |x| < 2MXX)  (see [11] ana
[1].) Partition calculus and ramification arguments are
used in the original proofs of these five inequalities.
(See [8] and [9].) Specifically, the Erd&s-Rado theorem
(€)% » «™" 2 is used in the proof of (1) and (2), the Erdds
theorem ¢ - (K,w)2~is used in the proof of (3), the Erd&s-
Rado theorem (227 » («*)2 is used in the proof of (4), and
in proving (5) Arhangel'skil uses a difficult ramification
argument toAconstruct a free sequence of length K*.

In [1l6] éapirovskii proved a fundamental theorem about
the cardinal function s, and from this theorem one easily

s (X) 58 (X)

obtains the two inequalities d(X) =< 2 and |X| £ 2 .

Pol [15] has modified éapirovskii's technique to give proofs
of the two inequalities |X| £ 22 XX 4pg |x] < LX) x X))

and I have used this technique to prove the inequality



116 Hodel

x| = 2SXIV(X) gy summary, the work of Pol and Sapirovskii
gives an alternate, unified approach to the five inequalities
stated above.

The point I would like to emphasize in this paper is
that the Pol-éapirovskii technique plays a fundamental, uni-
fying role in the theory of cardinal invariants and can be
used to prove a wide variety of cardinal function inequali-
ties. Specifically, I will illustrate their technique by

proving that every X,—compact space with a G .-diagonal has

8
cardinality at most 2%, The generalized version of this
inequality is due to Ginsburg and Woods [10]; their proof
uses the Erd&s-Rado theorem (2K)+ > (K+)3. In addition, I
will survey several other inequalities in cardinal functions,
each of which can be proved using the Pol-éapirovski{ tech-

nique.

The Technique Illustrated

In order to take advantage of well known terminology,
I will just prove the countable version of the Ginsburg-
Woods inequality. (The proof I give can easily be extended
to higher cardinality.) The following notation is used:
if X is a set, § is a cover of X, and D is a subset of X,
then st(D,$) = U{st(x,$): x ¢ D}. Reéall that a space is

Xl-compact if every uncountable subset has a limit point.

Lemma. Let X be a T,-space which s Xy-compact, let

1
G be an open cover of X, let C & X. Then there is a count-
able subset D of C such that C € st(D,§).

Proof. Suppose false. Construct a subset E = {xa:

<
0 2fac< wl} of C such that for all a < w,, X, Z UB<aSt(X8’9)’
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Let p be a limit point of E, and let G be a member of §
such that p belongs to G. Since p is a limit point of E
and X is Tl' there exists o and B, a > B, such that xu and

X, belong to G. This contradicts X, Z U

8 st(xs,g).

B<a

Theorem (Ginsburg and Woods). Let X be an xl—compact

space with a Gg-diagonal. Then |X| = 2%,

Proof. Since X has a Gé—diagonal, there is a countable

sequence 91, 92, ... of open covers of X such that if p and
g are any two distinct points in X, then for some n < w,

q ¢ st(p,gn). (See [4].) Construct a sequence {Ea:

0 £ o < w} of subsets of X such that (1) |E | £ 2%,

0 L g < wyi (2) for 1 £ g < wyr if {Dn: n < w} is a countable

collection of countable subsets of U E

B<a B’ and Un=15t(Dn’§n)

# X, then E, - un=lst(Dn,§n) # 8.
-_ . . w .
Let E = Ua<w1Ea' since |E| £ 2”, the proof is complete
if we can show that E = X. Suppose not, and let p ¢ X,

p £ E. For each n < o let C = {x: x e E, p £ st(x,§n)}:

o)

clearly E = Un=lcn' For each n < w, apply the Lemma to §n
and Cn: there is a countable subset D, of Cn such that

o
< <
C, € st(D ,§ ). Note that E Sy, _,st(D ,§ ) and

(o] o
P £ U _yst(D ,§ ). Now choose o < w, such that y _,D <
UB<uEB' By (2), there is some g in Ea such that g #
© . . c ®
Un=lst(Dn,§n). This contradicts E & Un=1st(Dn,§n).

Survey of Other Inequalities

First we need some definitions. For a Tl space X,
the point separating weight of X, denoted psw(X), is the
smallest infinite cardinal k such that X has a separating

open cover S with the property that every point of X is in
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at most k members of 5. (The cover S is separating if

given any two distinct points p and g in X, there is some

S in S such that p ¢ S, g £ S.) If psw(X) = w, we say that
X has a point-countable separating open cover. The extent
of X, denoéed e(X), is the smallest infinite cardinal ¢ such
that every closed, discrete subset of X has cardinality at

most k. (See [7], [13]). Note that for a T, space X,

1
e(X) = w if and only if X is xl—compact. The weak Lindelof
number of X, denoted wL(X), is the smallest infinite cardi-
nal K such that every open cover of X has a subcollection
of cardinality < k whose union is dense in X. Note that
wL(X) £ L(X) and wL(X) £ c(X). If wL(X) = w, we say that
X is weakly Lindelof.

Each of the following inequalities can be proved using

v v
the Pol-Sapirovskii technique. (1) If X is T,, then [X| <

LOOY(X)

1’
then |X| £ psw(X)
wL (X)X (X)

28 (XIPsw(X) (5 1£ x is Ty

(3) If X is normal and T,, then |X| £ 2 (see [31,

1’
[5]1, and [2] respectively.)
The countable version of (1) states that an xl-compact
space with a point-countable separating open cover has car-
dinality at most Y. (In fact, the number of compact sub-
sets has cardinality at most Zm.) This result should be
compared with the Ginsburg-Woods inequality. Two proofs of
(1) are given in [3]; the first uses an intersection theorem
of Erdos and Rado while the second proof uses the Pol-
éapirovski{ technique. (This second proof is also closely

related to a construction due to M. E. Rudin [6].)

Arhangel'skii has asked if every Lindeldf Hausdorff
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space with countable pseudo-character has cardinality at
most 2“, and (2) gives a partial answer to this question.
Specifically, the countable version of (2) stateé that a
Lindeldf space having countable pseudo-character and point
separating weight at most 2% has cardinality at most 2%,
The countable version of (3) states that a weakly

Lindeldf first countable Hausdorff space which is also nor-
mal has cardinality at most 2“, Except for the normality

assumption, inequality (3) unifies the two inequalities

|X| < 2C(X)X(X) and IXI hy 2L(X)X(X).

The reader is referred to [2], [5], [15], and [17] for
additional inequalities in cardinal functions which can be

proved using the Pol—éapirovskii technique.
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