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SHAPE THEORY AND GEOMETRIC PROBLEMS 

Jack Segal 

1.	 Introduction 

In 1968, K. Borsuk [1] introduced a new area of topology 

called shape theory. This theory gave a classification of 

compact metric spaces which was coarser than that of homo­

topy theory but which coincided with it on ANR's and CW com­

plexes. The theory can be viewed as a Cech homotopy theory 

since its relationship to homotopy theory is analogous to 
v 

the relationship between Cech homology and singular homology. 

Shape theory can be applied effectively to very general 

spaces in contradistinction to homotopy theory which requires 

spaces with nice local properties such as CW complexes or 

ANR's in order to capture their global structure. 

In 1971, S. Marde;ic and J. Segal [21] described an 

alternate approach to shape theory for compact Hausdorff 

a' 
spaces based on ANR-systems. If X = (Xa,Pa ,A) and Y = 

(YB,q~' ,B) are inverse systems of compact ANR's over cofi ­

nite directed sets with inverse limits X and Y, respectively, 

then a shape map from X to Y is given by a homotopy class 

of maps of systems (fS'~): X ~ ~, i.e., where ~: B ~ A is 

an increasing function and f : Y~(S) ~ Y satisfies
S S 

f ~(S') S' f h D _< D'.
sP~ ( S) ~ q S S " w enever IJ IJ 

Two such maps of systems (fS'~) and (gs'W): ~ ~ Yare homo­

topic if for each S there is a A ~ ~(S), $(S) such that 
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K. Morita [25] generalized this approach to arbitrary 

topological spaces. The description which follows is the 

one given by Dydak and Segal in [8]. One associates with 

each pointed topological space (X,x) a single inverse sys­

tem, called the Cech system of (X,x) which is denoted by 

v 
C(X,x). The construction of this procedes as follows. Let 

(Ua)aEA be the set of all locally finite numerable open 

coverings of X such that each U has exactly one member con­
a 

taining x. If Ua' is a refinement of U and a' ~ a, then a 

we put a < a'. For each a E A let (Ka,k ) be the nerve of a 

U (with the weak topology), where k is the vertex corres­
a a 

ponding to the unique element of U containing x. Then one 
a 

can obtain a map (X,x) ~ (K ,k ) with homotopy class 
. a a 

p : (X,x) ~ (Ka,k ) and a simplicial map (KS,k ) ~ (Ka,k )a a S a 

for S > a with unique homotopy class pS such that pSep = Paa a (3 
pSepY pY v 

and for a < S < Y . Then the Cech system of (X,x)
a S a 

is 

c(X, x) = ((K , k ), pS, A) . 
a a a 

This is the approach by which Cech dealt with homology. 

Let g = (qS)SEB: (X,x) + «YS'YS)' q~' ,B) be a morphism 

of pro-HT (i.e., the pro-category of the homotopy category 

of pointed topological spaces). Then g is said to satisfy 

the continuity condition, provided: (1) (factoring) for 

any map f: (X,x) ~ (K,k) into (K,k) which is homotopy equiva­

lent to a pointed CW complex there is a map gS: (YS'YS) ~ 

(K,k) with [gsl eq = [f] and (2) (short tails) if 
s 

g,h: (Y s,y s) ~ (K,k) are two maps such that [g] eqS = [h] eq(3' 

then for some S I ~ S, [g] .q~' [h] ~q~'. Then the main 
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property of Cech systems is that Px = (Pa)aEA: (X,x) -+ 

C(X,x) satisfies the continuity condition. 

Two important shape invariants are Cech homology and 

cohomology [21]. It is also possible to describe new con­

tinuous functors for an arbitrary topological space X such 

as the shape groups by taking inverse limits of inverse 

systems of homotopy groups of inverse systems associated 

with X. Further, one can use the systems themselves without 

passing to the limit to obtain the homotopy pro-groups. 

These homotopy pro-groups are an important shape invariant. 

Borsuk [3] also introduced a shape invariant called mova­

bility. This is a generalization of the notion of ANR. 

Marde~ic and Segal [23] described movability in terms of 

ANR-systems. An inverse system X = (X ,po.' ,A) is said to 
a a 

be movabZe provided for any a E A there is an a' ~ a such 

that for each a" ~ a' there is a morphism r: X ' -+ X " with a a 
a" a'Po. r Po. This definition applies in any pro-category.
 

A space (X,x) is called movabZe provided C(X,x) is movable.
 

The importance of movability stems from the fact that in its
 

presence, one may take the inverse limit of a system without
 

losing algebraic information about the system.
 

To illustrate this consider the following shape version 

of the classical Whitehead theorem. (This version is due to 

M. Moszynska [27] and was improved upon by Marde~ic [20] and 

J. Keesling [15]. 

Whitehead Theorem. Let f: (X,x) -+ (Y,y) be a shape 

map of pointed continua. If! induces isomorphism pro-TIk(f): 

pro-TIk(X,x) -+ pro-TIk(Y,y) of the homotopy pro-groups for 
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k ~ m + 1 and max(ddim X, ddim Y) ~ m, then f is a shape 

equivalence. 

Note that the shape version applies to continua while 

the homotopy version only applied to spaces with strong 

local properties such as CW complexes and that the homotopy 

pro-groups have replaced the homotopy groups. 

Recall that the deformation dimension, ddim x, of a 

space X is the minimum n such that any map of X into a CW 

complex K is homotopic to one whose image lies in the n­

skeleton of K. 

The following is a movable version of the Whitehead 

Theorem. 

Corollary. Let f: (X,x) ~ (Y,y) be a shape map of 

pointed continua such that ;k(f): ;k(X,x) ~ ~k(Y'Y) is an 

isomorphism for k ~ m + 1. If (X,x) and (Y,y) are movable 

and max(ddim X, ddim Y) ~ m, then f is a shape equivalence. 

2. Locally Well-Behaved Shape Representatives 

In this section we discuss the question of when a con­

tinuum has the shape of (l) a locally connected continuum 

or (2) a CW complex. Borsuk [2] introduced an n-dimen­

sional stratification of movability called n-movability. 

The pointed I-movable case is of special interest because 

a continuum possessing this property has the shape of some 

locally connected continuum and every locally connected 

continuum is pointed I-movable. Moreover, such continua 

can be characterized by a purely algebraic property in terms 

of their first homotopy pro-group. 
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a'An inverse system {(X ,x ),p ,A} of the homotopy cate­a a a 

gory of pointed topological spaces and maps preserving base 

points is n-movable iff for each a there is an a' ~ a such 

that for all a" > a, and any homotopy class f: (K,k) ~ (X " a 

xa') where K is an n-dimensional CW complex, there exists a 

homotopy class g: (K,k) ~ (Xa"'x ") with a 

Then a pointed topological space (X,x) is n-movabZe if its 

Cech system C(X,x) is n-movable. Finally, a continuum X is 

called pointed I-movable provided (X,x) is I-movable for 

each x in X. 

A pro-group G = {G ,pal ,A} is said to satisfy the 
- a a 

Mittag-Leffler condition provided for any a in A, there 

exists an a' ~ a such that for any a" ~ a' we have 

Further, a pro-group G is said to be stable if it is iso­

morphic, as a pro-group, to a group. 

Lemma. A pointed continuum (X,x) is I-movable iff 

pro-~l(X'x) satisfies the Mittag-Leffler condition. 

Theorem 1. [7] Let (X,x) and (Y,y) be pointed con­

tinua. If Sh(X) Sh(Y) and (X,x) is I-movable, then 

Sh(X,x) = Sh(Y,y) . 

Corollary. A continuum X is pointed I-movable iff 

(X,x) is I-movable for some x in X. 

Note that in general Sh(X) Sh (Y) (i. e., X and Y have 
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the same unpointed shape) does not imply that Sh(X,x) = 

Sh(Y,y) (i.e., X and Y have the same pointed shape) for all 

x in X and y ,in Y. However, Oydak [7] has shown that 

pointed I-movability is an invariant of unpointed shape. 

The following result due to Krasinkiewicz [18] charac­

terizes those continua which have the shape of a locally 

connected continuum. 

Theopem 2. Fop a continuum X the following conditions 

ape equivalent: 

(a) thepe exists a decpeasing sequence Xl 'X2 'X3 ' ••. 
00 

of locally connected continua such that X n Xo and XJo+ lj=l J 
is a 8tpong defopmation petpact of x fop j ~ l~j 

(b) X has the 8hape of a locally connected continuum~ 

(c) X i8 pointed I-movable. 

By the Lemma and Theorem 1, condition (c) is equivalent 

to pro-nl(X,x) satisfying the Mittag-Leffler condition. 

This result provides a direct computational means to deter­

mine which continua have the shape of a locally connected 

continuum. Among the known classes of pointed I-movable 

continua are (1) arcwise connected continua [19], (2) 

hereditarily decomposable continua [17], (3) subcontinua 

of 2-manifolds [17], [24], (4) continuous images of pointed 

I-movable continua [17], [24]. On the other hand, the 

dyadic solenoid is not pointed I-movable. 

s. Ferry [13] recently generalized Krasinkiewicz's 

result to homotopy locally n-connected continua as follows. 

Theopem 3. A continuum X has the 8hape of an Len con­
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tinuum iff pro-TIk(x) is stabZe for 0 ~ k ~ nand Mittag­

LeffZer for k = n + 1. 

Borsuk [3] also introduced a shape version of ANR's 

which is more restrictive than movability and which is 

called FANR's. We refer to these spaces as absolute neigh­

borhood shape retracts (ANSR's). An important property of 

pointed ANSR's is that they have the shape of CW complexes. 

This allows the use of the theory of CW complexes to inves­

tigate their geometry. D. A. Edwards and R. Geoghegan [10] 

have shown that a pointed connected space (X,x) of finite 

shape dimension has the shape of a pointed CW complex iff 

each of its pro-groups pro-TIn(X,x) is stable. However, it 

is not known whether ANSR's are pointed ANSR's. This ques­

tion has received considerable attention. Geoghegan [14] 

has shown that a connected ANSR X is a pointed ANSR iff the 

first derived limit limlprO-TIl(X,X) = o. J. Dydak and P. 

Minc [7] have described some examples which come close to 

answering the question. 

3.	 Shape and Some Geometric Problems 

One way in which shape theory is related to geometric 

problems is through the consideration of images of ANR's 

under CE (or cell-like) mappings (a mapping f: X ~ Y of X 

onto Y is said to be a CE map if the inverse image of each 

point has trivial shape). Between ANR's and, in particular, 

manifolds CE maps worked well and play a central role in 

the work of L. C. Siebenmann [28], R. D. Edwards, and J. E. 

West [32]. However, J. L. Taylor's example [29] of a CE 

map from the Kahn space (an infinite dimensional acyclic 
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space of nontrivial shape) onto the Hilbert cube which is 

not a shape equivalence showed the need to limit CE maps in 

some way in the more general setting. To do this G. 

Kozlowski [16] introduced the notion of hereditary shape 

equivalence. A mapping f: X ~ Y of X onto Y is a hereditary 

-1 -1shape equivalence iff flf (C): f (C) ~ C is a shape equiva­

lence for all closed subsets C of X. By restricting C to 

the points of X one sees that hereditary shape equivalences 

are CE maps. Hereditary shape equivalences behave well with 

respect to quotients and agree with CE maps on spaces which 

have a strong local structure (e.g., CE maps are hereditary 

shape equivalences when they map between ANR's or when the 

range has finite dimension). Kozlowski used this shape 

theoretic notion to give the following elegant characteri­

zation of the CE images of ANR's. 

Theorem 5. If f: X ~ Y is a CE map and X is an ANR, 

then Y is an ANR iff f is a hereditary shape equivalence. 

The behavior of CE maps with respect to dimension has 

been of considerable interest. Formally the question can 

be asked as follows. 

Question 1. Does there exist a GE map which raises 

dimension? In [31] J. J. Walsh has pointed out how Ques­

tion 1 is related to the following classical problem. 

Question 2. Does there exist an infinite dimensional 

compactum with finite cohomological dimension? 

If such a compacturn existed it could not contain finite 
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dimensional subsets with dimension greater than the cohomo­

logical dimension of the compactum. Walsh [30] has recently 

constructed infinite dimensional compacta which do not con­

tain n-dimensional (n ~l) subsets and has given [31] a 

method to show many of the known examples have infinite co­

homological dimension. The aohomoZogiaaZ dimension of a 

space X, cdim X, is defined to be the minimum integer n 

such that, whenever m ~ n and A closed in x, the homomor­

phism i*: Iim(XiG) -+ Hm(AiG) induced by the inclusion i: A eX 

is onto. Moreover, it follows from the fact that cohomo­

logical dimension and dimension agree on finite dimensional 

spaces and the Vietoris-Begle mapping theorem that the 

image of a CE dimension raising map would be infinite dimen­

sional and would have finite cohomological dimension. 

In [12] R. D. Edwards indicates why Questions 1 and 2 

are equivalent. Moreover, he outlines a program to find a 

counterexample in terms of an infinite collection of map­

pings between spheres whose finite compositions are all 

essential. Finally, Kozlowski has shown that the problem 

of CE dimension raising maps can be formulated in shape 

theory as follows. 

Question 3. If X is a finite dimensional compactum 

and f: X -+ Y is a CE map, then is f a shape equivalence? 

4. Strong Shape and Some Geometric Problems 

Another category, called the strong shape category, is 

also closely related to geometric problems. There has been 

considerable interest in the strong shape category because 
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it behaves better with respect to pairs and extensions that 

the shape category. Another reason for this interest is 

that if every shape equivalence is a strong shape equiva­

lence, then every ANSR is a pointed ANSR. The exact rela­

tionship between the equivalence of these categories is 

unresolved at the moment (see [9]). R. Geoghegan [14] has 

given a detailed account of the pointed versus the unpointed 

case arid its importance is shape theory. D. A. Edwards and 

H. M. Hastings [11] have given a categorical treatment of 

strong shape theory. The objects in their category are 

compact Z-sets'in the Hilbert cube Q and the morphism 

between such compacta X and Yare proper homotopy classes 

of maps from Q - X to Q - Y. Most likely they were influ­

enced in this approach by T. A. Chapman's [5] description 

of the shape category as one whose objects are complements 

of compact Z-sets in Q and whose morphisms are weak proper 

homotopy classes of proper maps. A. Calder and H. M. 

Hastings [4] have recently announced a purely categorical 

description of the strong shape category. 

Dydak and Segal in [9] describe the strong shape cate­

gory as one whose objects are compacta X and whose morphisms 

(strong shape maps) from X to Yare natural transformations 

from ITCTelY to ITCTelX where ITCTel(X,A): W ~ En~ is thep 

functor sending a pair of ANR's (P,R) to the set of mor­

phisms in the proper homotopy category from the contractible 

telescope CTel(X,A) to (P,R). The category obtained is iso­

morphic to the one previously described by Edwards and 

Hastings. aowever, Dydak and Segal concentrate on finding 

geometric conditions for a map to induce a strong shape 
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equivalence. They use proper homotopy theory to obtain 

geometric information about the strong shape category. For 

example, they are able to reduce the question of whether a 

morphism is a strong shape equivalence to verifying whether 

other maps are shape equivalences. This takes various 

forms, two of which follow. 

Theorem 6. Let f: X ~ Y be a map of compacta. Then f 

induces a strong shape equivalence iff for each compactum 

Z containing X the natural projection p: Z ~ Z U Y induces
f 

a shape equivalence. 

Theorem 7. Let f: X ~ Y be a map of compacta. Then f 

induces a stpong shape equivalence iff f: X ~ Y and 

f: M(f) ~ Y induce shape equivalences. 

A 

In the above M(f) denotes the double mapping cylinder 

of f: X ~ Y which is defined as the adjunction space 

M(f) = (X x [-1,1]) Uep (Y x {-l,l}) 

where 

ep = f xl: X x {-I, I} ~ Y x {-I, I} . 

The image of (u,t) under the quotient map q: (X x [-1,1]) + 
A A 

(Y x {-l,l}) ~ M(f) is denoted by [u,t]. The map f: M(f) ~Y 

is defined by f[u,t] feu), if (u,t) E X x [-1,1] and by 

f[u,t] = u, if (u,t) E Y x {-l,l}. Theorem 7 is obtained 

from Theorem 6 using a technique due to G. Kozlowski [16]. 

Dydak and Segal first prove a strong shape version of 

the Fox theorem. Then the question of whether a strong 

shape morphism is a strong shape equivalence is reduced to 

the consideration of simpler cases, namely, what happens 
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with maps induced by inclusions. As an application of their 

results they are able to determine when various classes of 

mappings induce strong shape equivalences. 

Theorem 8. A hereditary shape equivalence of compacta 

induces a strong shape equivalence. 

This theorem follows from Theorem 6 since Kozlowski 

has	 shown that any extension of a hereditary shape equiva­

lence is a shape equivalence. 

Theorem 9. If f: X + Y is a CE map and ddim X, 

ddim y < 00, then f induces a strong shape equivalence. 

References 

1.	 K. Borsuk, Concerning homotopy properties of compacta, 

Fund. Math. 62 (1968),223-254. 

2.	 , On n-movability, Bull. Acad. Polon. Sci. Sere 

Sci. Math. Astronom. Phys. 20 (1972), 859-864. 

3.	 , Fundamental retracts and extensions of fun­

damental sequences, Fund. Math. 64 (1969),55-85. 

4.	 A. Calder and H. M. Hastings, Realizing strong equiva­

lences, Notices AIDer. Math. Soc. 25 (1978), A328. 

5.	 T. A. Chapman, On some applications of infinite­


dimensional manifolds to the theory of shape, Fund.
 

Math . 76 (19 72), 181-19 3 .
 

6.	 J. Dydak, The Whitehead and Smale theorems in shape
 

theory, Dissertationes Mathematicae 156 (1978).
 

7.	 , A simple proof that pointed connected FANR-

spaces are regular fu~damental retracts of ANR's, Bull. 

Acad. Polan. Sci. Sere Sci. Math. Astronom. Phys. 25 

(1977), 55-62. 

8.	 and J. Segal, Shape theory: An introduction, 

Lecture Notes in Math. 688, Springer-Verlag, 1978. 

9.	 and , Strong shape theory, Disserta­

tiones Mathematicae (to appear). 



TOPOLOGY PROCEEDINGS Volume 4 1979	 171 

10.	 D. A. Edwards and R. Geoghegan, Stability theorems in 

shape and pro-homotopy, Trans. Amer. Math. Soc. 222 

(1976)., 389-403. 

11.	 and H. M. Hastings, Cech and Steenrod homo­

topy theories with applications to geometric topology, 

Lecture Notes in Math. 542, Springer-Verlag, 1976. 

12.	 R. D. Edwards, A theorem and a question related to co­

homological dimension and cell-like maps, Notices Amer. 

Math. Soc. 25 (1978), A259. 

13.	 S. Ferry, A stable converse to the Vietoris-Smale 

theorem with applications to shape theory (preprint). 

14.	 R. Geoghegan, The problem of pointed versus unpointed 

domination in shape theory, Topology Proceedings 3 

(1978), 95-107. 

15.	 J. Keesling, On the Whitehead theorem in shape theory, 

Fund. Math. 92 (1976),147-253. 

16.	 G. Kozlowski, Images of ANR's (preprint). 

17.	 J. Krasinkiewicz, Continuous images of continua and 1­

movability, Fund. Math. 98 (1978), 141-164. 

18.	 , Local connectedness and pointed I-movability, 

Bull. Acad. Po1on. Sci. Sere Sci. Math. Astronom. Phys. 

25 (1977), 1265-1269. 

19.	 and P. Minc, Generalized paths and pointed 

I-movability, Fund. Math. (to appear). 

20.	 S. Marde~ic, On the Whitehead theorem in shape theory 

I, II, Fund. Math. 91 (1976), 51-64 and 93-103. 

21.	 and J. Segal, Shapes of compacta and ANR-

systems, Fund. Math. 72 (1971), 41-59. 

22.	 and , Equivalence of the Borsuk and the 

ANR-system approach to shapes, Fund. Math. 72 (1971) , 61-68. 

23.	 and , Movable compacta and ANR-systems, 

Bull. Acad. Po1on. Sci. Sere Sci. Math. Astronom. Phys. 

18 (1970), 649-654. 

24.	 D. R. McMillan, One-dimensional shape properties and 

three-manifolds, (Charlotte Conference, 1974), Academic 

Press (1975), 367-381. 

25.	 K. Morita, On shapes of topological spaces, Fund. Math. 

86 (1975), 251-259. 



172	 Segal 

26.	 , The Whitehead theorem in shape theory, Proc. 

Jap. Acad. 50 (1974), 458-461. 

27.	 M. Moszynska, The Whitehead theorem in the theory of 

shapes, Fund. Math. 80 (1973), 221-263. 

28.	 L. C. Siebenmann, Approximating cellular maps by homeo­

morphisms, Topology 11 (1972), 271-294. 

29.	 J. L. Taylor, A counterexample in shape theory, Bull. 

Amer. Math. Soc. 81 (1975), 629-632. 

30.	 J. J. Walsh, Infinite dimensional compacta containing 

no n-dimensional (n ~ 1) subsets, Topology 18 (1979), 

91-95. 

31.	 , A class of spaces with infinite cohomological 

dimension (preprint). 

32.	 J. E. West, Compact ANR's have finite type, Bull. Amer. 

Math. Soc. 81 (1975), 163-165. 

University of Washington 

Seattle, Washington 98195 


	b5.pdf



