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ON AN INTERNAL PROPERTY OF 

ABSOLUTE RETRACTS 

Jan van Mill l and Marcel van de Vel 

o. Introduction 

The	 motivation for this paper partially arose from the 

3observation that the function m: 1 ~ I, where I denotes the 

closed unit interval [0,1], defined by m(x,y,z) = the middle 

of x, y and z, is continuous. This function induces a simi­

lar function m : Q3 ~ Q on the Hilbert cube Q(= roo) as fol­
00 

lows: 

moo(x,y,z)n = the middle of x n ' Yn and zn. 

This function has among others the following algebraic pro­

perty 

(*)moo(x,x,y) = moo(x,y,x) = moo(y,x,x) = x 

for all x,y E Q. Since having a function with this property 

is clearly a retraction invariant it follows that every (com­

pact) AR has such a function. A ternary operation ~ on a 

space X which satisfies (*) will be called from now on a 

mixer. Hence we can reformulate the above observation by 

saying that every AR has a mixer and the question arises 

whether every (metrizable) continuum with a mixer is an AR. 

Note that the above mixer and its "retracts" are also sym­

metric, i.e. moo(x,y,z) = moo(x,z,y) = As this condition 

can be avoided in all of our results we did not include it 

in our definition. 

lResearch supported by the Netherlands Organization for 
the Advancement of Pure Research (Z.W.O.); Juliana van Stol­
berglaan 148, s'-Gravenhage, The Netherlands. 



194 van Mill and van de Vel 

A class of spaces with a very "geometric" mixer is the 

class of all triple-convex subspaces of the Hilbert cube. 

A subset X C Q is called tripZe-convex whenever m [X3 ] = X, 
00 

where m is defined as above (cf. van Mill & Wattel [6]).
00 

It has been proved by van Mill [4] that every compact con­

nected triple-convex subset of Q is an AR, a result which 

indicates that the answer to the above question might well 

be in the affirmative. Unfortunately not every AR is 

realizable as a triple-convex subset of Q. A. Szymanski has 

observed that each compact connected triple-convex subset of 

Q is even a local AR, so that, for example, the two dimen­

sional AR having the singularity of Mazurkiewicz, described 

by Borsuk ([1], p. 152), is not realizable as a triple-

convex subset of Q. This observation makes our question 

interesting even in the finite dimensional case. 

We will prove that each continuum with a mixer is COO 

and LC
oo 

, in particular, such a continuum is locally connected. 

As a consequence, a finite dimensional continuum X is an AR 

iff X has a mixer. We were unable to solve our problem in 

the infinite dimensional case. However, we will show that 

a contractible continuum with a mixer is EC which shows that 

for obtaining a counterexample to our question an example 

like Borsuk's ([1], p. 124) famous contractible and locally 

contractible compactum which is not an AR is of no help. 

All spaces in consideration are compact metric. 

1. Spaces with a Mixer are COO and LC 00 

In this section we show that each continuum with a 

mixer is COO and LC
oo 

• This allows us to give an internal 
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characterization of finite dimensional ARls. 

1.1. Lemma. Let X be a continuum with a mixer. Then 

X	 is locally connected. 

Proof. Let U c X be open and let K be a component of 

u. We will show that K is open. 

3Let ~: x ~ X be a mixer and take x E K. Then 

~-l[U] ::> ~-l(x) ::> ({x} x {x} x X) u ({x} x X x {x}) 

U (X	 x {x} x {x}), 

and by compactness there is a neighborhood V of x such that 

~-l[U] ::> (V x V x X) u (V x X x V) u (X x V x V). 

Since clearly (V x V x X) u (V x X x V) u (X x V x V) is 

connected we conclude that 

~ [(V x V x X) u (V x X x V) U (X x V x V)] c K 

and consequently x EVe K. Therefore, K is open. 

1.2. Lemma. Let X be a compact space, and let ~: 

X
3 ~ X be a mixer. If x ,y ,z (n EN) are points of X such n n n 

that the sequences (xn)nEN and (Yn)nEN both converge to 

a E X, then the sequence (~(xn'Yn,zn))nEN converges to a. 

Proof. Let U be a neighborhood of a. As in the proof 

of the preceding lemma we can find a neighborhood V of'a 

with 

(V x V x X) u (V x X x V) u (X x V x V) c ~-l[U]. 

Let no E N be such that xn'Y E V for all n > no. For such n 

n, the triple (xn,yn,zn) is in the left hand set above, 

whence 

~(xn'Yn,zn) E U 

for each n > n . o
 

We can now prove our first main theorem.
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1.3. Theorem. Let X be a continuum with a mixer. 

oo
Then X is COO and LC • 

oo
Proof. We will only show that X is LC • The proof 

3that X is COO is similar, though easier. Let ~: X + X be a 

mixer. By Lemma 1.1, X is locally path connected (LCo ) by 

our assumption on metrizability. Let n ~ 1, and let U be 

a neighborhood of x E X. As above, we can find a neighbor­

hood V of x with 

-1(V x V x X) u (V x X x V) u (X x V x V) c ~ [U]. 

Let f: Sn + V be a map. We use the standard representations 

sn = {(x , ••• ,x ) E Rn+l : 
o n 

n
L x.

2 
I} , 

i=O 1. 

nI x.
2 

< I}.
i=O 1. 

Let u E Bn +l be defined by 

u. = 0 for 1 < i < n. 
1. 

For each v E Bn +l the equation 

n-l 2 2
L v. + y = 1
 

i=O 1.
 

has exactly two solutions y = gl(v) > 0 and y g2(v) < 0
 

each depending continuously on v.
 

For each v E Bn+l\{u} the line through u and v meets Sn\{u}
 

in exactly one point g3(v) depending continuously on v. We
 

put g3(u) = u for convenience.
 

This leads us to a map
 

n+l n 3

9 = (gl,g2,g3): B + (S ) 

which is continuous in all points v ~ u. Define f: Bn+l 
+ X 

as the composition 

Bn+1 2 (Sn)3 + x3 ~ x, 
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where the map in the middle is (f,f,f). Then f extends f 

since for each v E sn, two points out of gl(v), g2(v), g3(v) 

equal v. Also, f is continuous in each point v E Bn+l\{U}. 

Let (anlnEN be a sequence in Bn+1\{u} converging to u. Then 

fgl(a ) and fg (a ) both converge to feu), whence by Lemma n 2 n 

1.2 

I(a) = ~(fgl(a ),fg (a ),fg (a»n n 2 n 3 n 

converges to f(u). This proves continuity of f. 

Finally note that for each v E Sn we have fey) E V. By 

the construction of V, we find that f[Bn +l ] c U. Hence, X 

is LCn for each n > 1. 

Observe that the above extension f of f is obtained 

through a constant (i.e. not depending on f) procedure on 

n+l 1 ° ° h O h ° h dOh fB , resu t1ng 1nto a map w 1C 1S t en compose W1t • 

1.4. Corollary. Let X be a finite dimensional con­

tinuum. Then X is an AR iff it admits a mixer. 

Proof. This is a direct consequence of Theorem 1.3 and 

Borsuk ([1], p. 122). 

2. EC Structures 

A locaZ equiconnecting function (cf. Fox [3]) for a 

space Y is a map A: U x I ~ Y, where U is a neighborhood of 

the diagonal in Y x Y, such that A(Yo,yl,i) = Yi(i E {O,l}), 

and A(y,y,t) = y, for every Yo'Yl'Y E Y, t E I. An equicon­

necting function for a space Y is a local equiconnecting 

function the domain of which is Y x Y x I. We say that Y is 

EC (LEC) if it admits an equiconnecting function (a local 

equiconnection function) . 
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2~1. Theorem. Let X be a continuum with a mixer. 

If X is contractibte then X admits an equiconnecting func­

'tion. 

Proof. Let H: X x I ~ X be a homotopy which is the 

identity at stage 0 and which is constant at stage 1. In 

addition, let ~ be a mixer. Define an equiconnecting func­

tion A by 

1
 
~(Xl'X2'H(Xl'2t» (t < 1/2)


A(xl ,x2 ,t) = 
~(xl,x2,H(x2,2-2t» (t > 1/2). 

The check that A is indeed an equiconnecting function is 

left to the reader. 

As a corollary we obtain that Borsuk1s [1] contractible 

and locally contractible compactum which is not an AR does 

not have a mixer since Dugundji [2] has shown that this space 

is not LEC. 

The contractibility condition in Theorem 2.1 is an un­

pleasant limitation. In van Mill & van de Vel [5] this con­

dition will be weakened considerably. There we will show, 

using the idea of the proof of Theorem 2.1, that whenever X 

has a (local) mixer and has an open cover by sets contracti ­

ble within X then X is LEC (also for non-compact X) • 

Let ~ be a mixer on X. If a,b E X are distinct such 

that ~(a,b,x) x for each x E X, then we say that a and b 

are endpoints for ~, and we say ~ is a mixer with endpoints. 

2.2 Theorem. EachARhas a mixer with endpoints and 

each continuum having a mixer with endpoints is contractibZe, 

hence even EC. 

Proof. Let X be a non-degenerate AR and embed X in Q 
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in such a way that both (0,0,···) and (1,1, ••• ) belong to 

X. Let r: Q ~ X be a retraction and let m be as in the 
00 

introduction. Define~: x3 ~ X by 

~ (x, y , z ) = rm (x, y , z) • 
oo 

Clearly ~ is a mixer with endpoints. 

3
Now let ~: x ~ X be a mixer with endpoints, say 

~(a,b,x) = x for each x E X and distinct a,b E X. By Lemma 

1.1 X is a Peano continuum, so X is path-connected. Fix 

c E X - {a,b} and let f o : I ~ X be a path with fo(O) = a 

and f o (l) c and let f 
l 

: I ~ X be a path with fl(O) b 

and fl(l) c. Now define H: X x I ~ X by 

H (x,t) = ~ (fo (t) , f 
l 

(t) ,x) . 

It is easily seen that H is a contraction. By using Theorem 

2.1 we find that X is even EC. 

3. Remarks 
3An important construction related to a mixer ~: x ~ X 

is to obtain neighborhoods V cUe X with 

(V x V x X) u (V x X x V) u (X x V x V) c ~ -1 [U] • 

The above results can be adapted for "local" mixers provided 

one requires such a map to be defined on a neighborhood of 

3
the diagonal of x containing enough small sets of the above 

type. This will be investigated in a forthcoming paper of 

the authors, in which we will also obtain results for non-

compact spaces (cf. [5]). 
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