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HEREDITARY PROPERTIES IN GO-SPACES;
A DECOMPOSITION THEOREM
AND SOME APPLICATIONS

J. M. van Wouwe

Introduction

During the last years considerable research has been
done about what it means for a space that each of its sub-
spaces satisfies a certain, in general not hereditary
property. This kind of problem was more or less started by
A. V. ArhangePskii in [1]. He proved that a space, each of
which subspaces is a Lindelof p-space is metrizable.

H. Bennett and D. J. Lutzer ([2]) proved that a GO-space
that is hereditarily an M-space (p-space) is metrizable.

We here prove a theorem about decompositions of GO-spaces
from which Bennett and Lutzers result can be derived. Also
it can be used to prove something about GO-spaces that are

hereditarily a I-space.

1. The Decomposition Theorem

First we give some terminology. A subset D of a
topological space X is called diserete in X if it is closed
in X and carries as a subspace the discrete topology. A
subset is said to be a o-discrete (in X) if it is the union
of countably many discrete (in X) sets. For a GO-space
X = (X,%,1) we define

E(X): = {x € X|[x,>) € T or («,x] € 1}
If X is metrizable than obviously E(X) is o-discrete,

since X has a o-discrete base.
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For more terminology on GO-spaces we refer to [4].
Finally we state here a well-known result about decomposi-

tions of GO-spaces, which will be used several times.

Proposition 1.1. If X = (X,%,1) is a GO-space and 0
is an equivalence relation on X sueh that the decomposition
space X/0 consists of convex closed sets then the triple
(X/D42,8) 18 a GO-space, where 2 is the obvious order on

X/D and § is the quotient topology on X/D.

Theorem 1.2. Let X = (X,%,1) be a GO-space and 0 an
equivalence relation on X with convex equivalence classes,
such that

(i) x/D is metrizable

(i1) each equivalence class of 0 has a Gé—diagonal.
If each subspace of X is a p-space (resp. M-space, resp.
I-space) then X is metrizable.

Proof. ﬁenote the quotient space X/J by dX and let
d: X » dX be the quotient map. Whenever x € X we shall

denote d_l(d(x)) by X. Define the following subsets of X:

K: = {x € X|[% = {x}}

L: = {x € X|x is left endpoint of %, and |%X| > 1}

R: = {x € X|x is right endpoint of %, and |%| > 1}.
Moreover

A: =L U {x € R|X has no left endpoint}.

B: = R U {x € R|X has no right endpoint}.

The set V: = {y € dX|y is not isolated} is closed in dX and
hence a Gd—set. Let 0(n) (n=1,2,...) be open sets in dX
nn=lo(n) and O(n+l) < O(n), and put U(n):

= d_l[o(n)]. Now observe that if 2 is a subset of X such

such that vV =
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that d|Z is one-to-one then Z has a G .-diagonal, and hence

§

is metrizable, since a GO-space with a G.-diagonal is para-

§
compact and hence metrizable if its is a p-space or M-space,
by the Okuyama-Borges theorem ([6] or [3]). Also, by [5] a

paracompact r-space with a G ,-diagonal is a o-space, and

$
hence metrizable if it is a GO-space. This implies that
K U A and K U B are metrizable. Clearly A (resp. B) is
contained in E(K U A) (resp. E(K U B)) so A (B) is og-discrete
in K U A (K U B respectively). Consequently A can be written
as U:=1A(n) where A(n+l) » A(n), and for each x € K y A and
n € N there exists an open (in X) convex neighbourhood O(x,n)
of x such that

O(x,n) N (A(n)\{x}) = ¢
and B can be written as U:=1B(n) where B(n+l) o B(n) and
for each x € KU B and n € Nthere exists an open (in X)
convex neighbourhood U(x,n) of x with

U(x,n) 0 (B(n)\{x}) = 4.
We may suppose that if x' belongs to O(x,n) (U(x,n) resp.)
and d(x') # d(x) then X' is contained in O(x,n) (U(x,n)
respectively) for there are at most two points y # d(x) such
that d_l(y) meets O(x,n) but is not contained in it. Sub-
tracting d_l(y) from O(x,n) for those y, we obtain a set
with all the required properties. The same applies to

U(x,n). We will now prove that X has a G,-diagonal too,

§
from which it follows in all cases that X is metrizable.
Let (V(n)):=l be a sequence of open covers of dX, such that
n:___18t(y,}/(n)) = {y} for each y € dX, and for each n ¢ N,
y € dX let W(d_l(y),n) be an open neighbourhood of d_l(y)

in X that is mapped by d into some element of /(n), with
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the additional property that W(d-l(y),n+l) c W(d_l(y),n).
Furthermore, for each y € dX let (Wy(n)):=l be a
sequence of open (in d-l(y)) covers of d-l(y) such that
ﬂ:=18t(x,Wy(n)) = {x} for each x € d_l(y). For each n € N,
x € d-l(y) choose an open (in d_l(y)) neighbourhood Wy(x,n)
of x, contained in some element of Wy(n) such that Wy(x,n+l)
c Wy(x,n) and such that Wy(x,n) contains no endpoints of
d_l(y) except possibly x itself. In particular, this im-
plies that Wy(x,n) is open in X if x is an interior point
of %k.
Now for x € X, n € N define W(x,n) as follows:
- if x € Int(%X) then W(x,n): = W

d(X)(x,n).
- if x ¢ Int(%X) then we have the following possibilities:

(i) x € K
W(x,n): = U(x,n) N O(x,n) N U(n) n W@ t(d(x)),n).
(ii) X €L

W(x,n): = [(O(x,n) N («,x]) U Wq )(x,n)] N U(n)

(x
N w@l@x)),n.

(iii) x € R

W(x,n): = [(U(x,n) N [x,»)) U W

a(x) (X1 N U(n)

N w@t@),n.
Observe that in all cases W(x,n) N ¥ = Wd(x)(x,n) (*)
Put

W(ny: = {W(x,n)|x € X} (n=1,2,...)
then each #(n) is an open cover of X. We shall prove that

0
ﬂn=lst(x,W(n)) = {x} for each x € X. To this end fix dis~

tinct points x., and x, in X. We claim that there exists a

1 2

natural number n, depending only on x, and X, such that each

1

W(x,n) misses either X; or x,.
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Let x be an arbitrary element of X. We have the
following possible cases:
(1) d(xl) # d(Xz)-
Take n such that d(xz) £ St(d(xl),V(n)). Since W(x,n) is
contained in W(d_l(d(x)),n) and hence is mapped into some
element of V/(n), which cannot contain both d(xl) and d(xz)

either x, or x

1 does not belong to W(x,n).

2

(IT) d(xy) = d(x,) (Clearly %, and x, do not
belong to K).
a) d(xl) is an isolated point of dx.

Take n such that d(xl) does not belong to O(n) and X, £

St(xl,Wd(xl)(n)). If d(x) = d(xl) then (%) and the condition
X, £ St(xl,Wd(xl)(n)) imply that W(x,n) does not contain
both Xy and X,. If d(x) # d(xl) then W(x,n) N il =@ if

W(x,n) is contained in %, and if W(x,n) is not contained in
% then W(x,n) < U(n) because d(x) is not isolated; so W(x,n)
n il is empty too.

b) d(xl) is not an isolated point of dX.

We have three possible subcases

1) il has a left endpoint 1 and no right endpoint.

Consequently 1 € A N B.

Take n such that 1 € A(n) N B(n) and x, ¢ St(xl,Wd(xl) (n)).
If d(x) = d(xl) then again (%) implies that W(x,n) misses

either x, or x,; if d(x) # d(x;) then W(x,n) 0 il =@ if

1
W(x,n) is contained in %X. If W(x,n)\X is non-empty then
X € KUAor x € KU B, and hence U(x,n) (or O(x,n) respec-
tively) is defined and contains W(x,n)\X. Consequently,

W(x,n) misses 1, and hence by the extra condition on O(x,n)

(or U(x,n)) it also misses Xq -
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2) Rl has a right endpoint r and no left endpoint. The
argument for this case is completely analogous to that for
the preceding case.

3) il has a left endpoint 1 and right endpoint r. Fix

n such that 1 € A(n), r € B(n) and x, ¢ St(xl,Wd(xl)(n)).

Assume that d(x) # d(xl) and that W(x,n) is not contained
in % (Else argue as under 1l)). Then W(x,n)\X is contained
in either O(x,n) or U(x,n), so it misses either 1 or r, and
hence W(x,n) N il = @. It follows that in all possible

cases x., does not belong to St(xl,W(n)) for some n. So

2

ﬂn=18t(x,W(n)) = {x} for each x € X which proves the theorem.

Note. 1In this proof p-, M~, or I-space can of course
be replaced by any other property that together with the

existence of a G ,-diagonal implies metrizability in a GO-

J
space, as is clear from the proof. However, the condition
cannot be dropped altogether; the lexicographic ordered
square L is an example of a non-metrizable space while the
equivalence relation J on L, defined by

(x,y) D(x',y') <=>x =y ((x,y),(x",y") € L)

satisfies (i) and (ii) in Theorem 1.2.

2. Applications

First we prove the following theorem.

Theorem 1.2. Let X = (X,5,T) be a GO-space such that
X = A UB where A and B are dense, metrizablé subspaces of
X. Then X is metrizable.

Proof. We claim that a o-discrete (in A) subset of A

is o-discrete in X. To prove this take a discrete (in A)
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subset F of A. Since X is hereditarily collectionwise nor-
mal, there exists for each x € F an open (in X) convex
neighbourhood U(x) of X such that U(x) N U(x') = @ if x # x'.
Since B is dense in X, {U(x) N B|x € F} is a disjoint col-
lection of non-empty open convex subsets of B. It follows
from ([4], Theorem 2.4.5) that this collection can be written
as U:=10(n), where each ((n) is a discrete collection in B.
Now put

F(n): = {x € F|u(x) N B € 0(n)} (n=1,2,...).
Then each F(n) is discrete in X and F = U:le(n).

Hence each discrete subset of A is o¢-discrete in X,
and the same holds for a ¢-discrete (in A) subset of A. Of
course an analogous statement is true for a og-discrete (in
B) subset of B.

It follows that X has a o-discrete dense subset, since
A has one; moreover E(X) < E(A) U E(B), and since both E(Aa)
and E(B) are o-discrete in X, E(X) is o-discrete in X.
Hence, X is metrizable by ([4], Theorem 3.1).

We are now ready to prove Bennett and Lutzers theorem
of [2] with the help of Theorem 1.2. Let X be a GO-space
that is hereditarily a p-space or an M-space. It was proven
in [2] that X is paracompact. Define an equivalence rela-
tion §x on X by

X§Xy <=> the closed interval between x and y is
compact (x,y € X).
By ([7], Theorem 2.1.3) the decomposition space X/§X is
metrizable. Hence, to show that X is metrizable it suffices
to show that each equivalence class is metrizable; and to

show that an equivalence class G is metrizable, we only have
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to prove, by paracompactness of X, that for x,y € G(x < y)
the interval [x,y] is metrizable.

Now fix C = [x,y] < X such that [x,y] is compact. We
define another equivalence relation ~ on C by

X ~ y <=> the closed interval between x and y is
metrizable (x,y € C).

Clearly, each equivalence class is metrizable, so we have
to prove that C': = C/~ is metrizable. Note that C' is also
a hereditary p-space since the quotient mapping is perfect.

Now observe that C' is a compact, connected GO-space,
since it cannot have neighbours by the definition of ~.
Suppose that C' consists of more than one point; then it is
easy to define two disjoint dense subsets P and Q of C' such
that P U Q = C'. Then P and Q are p-spaces; hence the quo-
tient spaces P/gP (xP) and Q/§Q(:Q) are metrizable by ([7],
Theorem 2.1.3). Consequently C' is metrizable by Theorem

2.1, and we are done.

Another application of Theorem 1.2 lies in the field
of generalized ordered I-spaces. A I-network for a space X
is a o-locally finite closed cover 7 = U:=I7(n) of X (where
each 7 (n) is locally finite) with the following properties:

(i) C(x): =N {F|x € F € 7} is countably compact

(ii) If U is an open set containing C(x) then there

exists an F € 7 such that C(x) « Fc U (x € X)

A space that admits a I-network is called a I-space (Nagami,
[51).

In [7] we proved the following fact about generalized

ordered I-spaces: Define for a GO-space X an equivalence
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relation . in the following way:
xly <=> the closed interval between x and y is a
Lindeldf-space (x,y € X),
and let 1X: = X// be the quotient space. Again, 1lX is a

GO-space, and we have

Theorem 2.2. Let X = (X,%,1) be a paracompact GO-space.
Then X i8 a I-space <=> 1X is metrizable and each L € X/[

has a T-network.

Now the following facts are known about GO-spaces that
are hereditarily I-spaces (see [7]):

1) Let X be a GO-space that is a hereditary I-space.
Then X is hereditarily paracompact. (Note that for instance

the ordinal space w, is not a hereditary I-space; a bi-

1

stationary set in w, is not a I-space).

1
2) Let X be a GO-space that is both a I-space and

hereditarily paracompact. Then X is first countable.

Corollary. If X is a hereditarily IL-space then X is

first countable.

Furthermore, we state the following theorem, without

proof.

Theorem 2.3. ([7], Theorem 4.1.3) Let X = (X,5,T) be
a perfectly normal GO-space. Then

X Zs a I-space <=> X is an M-space.

It is an unsolved problem whether a GO-space that is
a hereditary I-space is metrizable. However, with the help

of the facts stated above, we are able to prove that the
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following conjectures are equivalent.

Conjecture I: FEach GO-space that is a hereditary EI-
space is metrizable.
Conjecture I1: Each Lindeldf GO-space that is a heredi-

tary L-space is hereditarily Lindeldf.

That Conjecture II follows if Conjecture I holds, is
trivial, so suppose that the second conjecture is true, and
let X be a GO-space that is a hereditary I-space. By Theorem
2.2. the quotient space 1lX is metrizable. Hence, by Theorem
1.2. it is sufficient to prove that each L of the decomposi-
tion X// is metrizable. By paracompactness of X we only
have to prove this for each subset L' = L with two endpoints.
Now let L' = [a,b] be a subset of some L € X//. Then L' is
Lindeldf by the definition of [, and hence, by Conjecture II
it is hereditarily Lindel6f. Consequently, L' is perfectly
normal so L' is an M-space by Theorem 2.3. Since the same
applies to each subset of L', it follows from the Bennett-
Lutzer Theorem that L' is metrizable. Consequently, Conjec-

ture I holds.

References

[1] A« Vs Arhangerski{, On hereditary properties, Gen. Top.
Appl. 3 (1973), 39-46.

[2] H. R. Bennett and D. J. Lutzer, Certain hereditary
properties and metrizability in generalized ordered
spaces, Fund. Math. (to appear).

[3] C. J. R. Borges, On stratifiable spaces, Pacific. J.
Math. 17 (1966), 1-16.

[4] M. J. Faber, Metrizability in generalized ordered
spaces, MC Tract 53, Amsterdam (1974).



TOPOLOGY PROCEEDINGS Volume 4 1979 211

[5] K. Nagami, I-spaces, Fund. Math. LXV (1969), 169-192.

6] A. Okuyama, On metrizalility of M-spaces, Proc. Japan
Acad. 40 (1964), 176-179.

[7] J. M. van Wouwe, GO-spaces and generalizations of metri-
zability, MC Tract 104, Amsterdam (1979).

Subfaculteit Wiskunde
Vrije Universiteit

De Boelelaan 1081
1007 MC Amsterdam

The Netherlands



	b9.pdf



