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HEREDITARY PROPERTIES IN GO-SPACES; 

A DECOMPOSITION THEOREM 

AND SOME APPLICATIONS 

J. M. van Wouwe 

Introduction 

During the last years considerable research has been 

done about what it means for a space that each of its sub­

spaces satisfies a certain, in general not hereditary 

property. This kind of problem was more or less started by 

A. v. Arhange~skii in [1]. He proved that a space, each of 

which subspaces is a Lindelof p-space is'metrizable. 

H. Bennett and D. J. Lutzer ([2]) proved that a GO-space 

that is hereditarily an M-space (p-space) is metrizable. 

We here prove a theorem about decompositions of GO-spaces 

from which Bennett and Lutzers result can be derived. Also 

it can be used to prove something about GO-spaces that are 

hereditarily a L-space. 

1. The Decomposition Theorem 

First we give some terminology. A subset Dof a 

topological space X is called disarete in X if it is closed 

in X and carries as a subspace the discrete topology. A 

subset is said to be a a-disarete (in xJ if it is the union 

of countably many discrete (in X) sets. For a GO-space 

X	 = (X,~,T) we define 

E(X): = {x E xl [x,-+-) E T or (+,x] E T} 

If X is metrizab1e than obviously E(X) is a-discrete, 

since X has a a-discrete base. 
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For more terminology on GO-spaces we refer to [4]. 

Finally we state here a well-known result about decomposi­

tions of GO-spaces, which will be used several times. 

Ppoposition 1.1. If X = (X,~,T) is a GO-space and D 

is an equivalence pelation on X such that the decomposition 

space x/D consists of convex closed sets then the tpiple 

(x/D~~,o) is a GO-space 3 where ~ is the obvious order on 

x/D and 0 is the quotient topology on x/D. 

Theopem 1.2. Let X = (X,~,T) be a Go-space and D an 

equivalence pelation on X with convex equivalence classes 3 

such that 

(iJ x/D is metpizable 

(iiJ each equivalence class of D has a Go-diagonal. 

If each subspace of X is a p-space (pesp. M-space 3 pesp. 

E-spaceJ then X is metpizable. 

Ppoof. Denote the quotient space x/D by dX and let 

d: X + dX be the quotient map. Whenever x E X we shall 

denote d-l(d(x» by x. Define the following subsets of X: 

K: {x E Xix = {x}} 

L: {x E Xix is left endpoint of x, and Ixl > I} 

R: {x E Xix is right endpoint of X, and Ixl > I}. 

Moreover 

A: L U {x E Rlx has no left endpoint} . 

B: R U {x E Rlx has no right endpoint}. 

The set V: = {y E dxlY is not isolated} is closed in dX and 

hence a Go-set. Let O(n) (n=1,2, ... ) be open sets in dX 
00 

such that V = nn=lO(n)' and O(n+lf c: O(n), and put U(n): 

= d-l[O(n)]. Now observe that if Z is a subset of X such 
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that dlz is one-to-one then Z has a Gc-diagonal, and hence 

is metrizable, since a GO-space with a Go-diagonal is para­

compact and hence metrizable if its is a p-space or M-space, 

by the Okuyama-Borges theorem ([6] or [3]). Also, by [5] a 

paracompact E-space with a Gc-diagonal is a a-space, and 

hence metrizable if it is a GO-space. This implies that 

K U A and,K U Bare metrizable. Clearly A (resp. B) is 

contained in E(K U A} (resp. E(K U B)} so A (B) is a-discrete 

in K U A (K U B respectively). Consequently A can be written 
00 

as Un=lA(n} where A(n+l} ~ A(n}, and for each x E K U A and 

n E N there exists an open (in X) convex neighbourhood O(x,n} 

of x such that 

o (x,n) n (A (n)' {x}) = ¢ 
00 

and B can be written as Un=lB(n} where B(n+l} ~ B(n} and 

for each x E K U Band n E Nthere exists an open (in X) 

convex neighbourhood U(x,n} of x with 

U(x,n} n (B(n},{x}) = ¢. 

We may suppose that if Xl belongs to O(x,n} (U(x,n) resp.) 

and d(x l } ~ d(x} then Xl is contained in O(x,n} (U(x,n) 

respectively} for there are at most two points y ~ d(x} such 

that d-l(y) meets O(x,n) but is not contained in it. Sub­

tracting d-l(y} from O(x,n} for those y, we obtain a set 

with all the required properties. The same applies to 

U(x,n}. We will now prove that X has a Go-diagonal too, 

from which it follows in all cases that X is metrizable. 

Let (V(n}}:=l be a sequence of open covers of dX, such that 

n:=ISt(y,V(n)} = {y} for each y E dX, and for each n EN, 

y E dX let W(d-l(y} ,n} be an open neighbourhood of d-l(y} 

in X that is mapped by d into some element of V(n}, with 
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the additional property that wed-ley) ,n+l) c W(d-l(y),n). 

Furthermore, for	 each y E dX let (W
y 

(n»oo
n= 

1 be a 

-1 -1 
sequence of open	 (in d (y» covers of d (y) such that 

n°O lSt(x,W (n» = {x} for each x E d-l(y). For each n EN;
n= y 

x E d-l(y) choose an open (in d-l(y» neighbourhood W (x,n)
y 

of x, contained in some element of W y (n) such that Wy (x,n+l) 

c W (x,n) and such that W (x,n) contains no endpoints of y	 y 
-1d (y) except possibly x itself. In particular, this im­

plies that wy(x,n) is open in X if x is an interior point 

of x. 
Now for x EX, n	 E N define W(x, n) as follows: 

- if x E Int(x) then W(x,n): = Wd(x) (x,n). 

- if x ~ Int(x) then we have the following possibilities: 

(i) x E K 

-1W(x,n): U(x,n)	 n O(x,n) n U(n) n Wed (d(x» ,n). 

(ii) x E L 

W(x,n): = [(O(x,n) n (-+-,x]) U Wd(x) (x,n)] n U(n) 

n W(d-l(d(x»,n). 

(iii) x E R 

W(x,n): = [(U (x,n) n [x,-+» U Wd (x) (x,n)] n U (n) 

n W(d- l (d (x» ,n) • 

Observe that in all cases W(x,n) n x	 (*)Wd(x) (x"n) 

Put 

W(n): = {W(x,n) Ix E X} (n == 1,2, ... ) 

then each Wen) is an open cover of X. We shall prove that 

n:=lSt(x,W(n» = {x} for each x E X. To this end fix dis­

tinct points xl and x in X. We claim that there exists a
2 

natural number n, depending only on xl and x such that each
2 

W(x,n) misses either xl or x •
2 
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Let x be an arbitrary element of X. We have the 

following possible cases: 

(I) d(x ) ~ d(x ).l 2

Take n such that d(x2 ) 1 St(d(xl ) ,V(n)). Since W(x,n) is 

contained in W(d-l(d(x)) ,n) and hence is mapped into some 

element of V(n), which cannot contain both d(x ) and d(x )l 2

either xl or x does not belong to W(x,n).2 

(II) d(xl ) = d(x ) (Clearly xl and x do not2 2 

belong to K) . 

a) d(x ) is an isolated point of dX.
l 

Take n such that d(x ) does not belong to O(n) and x ~ 
l 2 

St{Xl,Wd{X ) en»~. If d{x) = d{xl ) then (*) and the condition 
l 

x 2 ~ St{Xl,Wd{X ) en»~ imply that W{x,n) does not contain 
l 

both xl and x 2 . If d(x) ~ d(x ) then W(x,n) n xl = ¢ ifl 

W(x,n) is contained in X, and if W(x,n) is not contained in 

X then W(x,n) c U(n) because d(x) is not isolated; so W(x,n) 

n xl is empty too. 

b) d(x ) is not an isolated point of dX.l 

We have three possible subcases 

1) xl has a left endpoint 1 and no right endpoint. 

Consequently lEA n B. 

Take n such that 1 E A{n) n B{n) and ~ St{Xl,Wd{x ) en»~.x 2 l 
If d(x) = d(x ) then again (*) implies that W(x,n) misses

l 

either xl or x 2 ; if d(x) ~ d(xl ) then W(x,n) n xl = ~ if 

W(x,n) is contained in x. If W(x,n)\x is non-empty then 

X E K U A or X E K U B, and hence U(x,n) (or O(x,n) respec­

tively) is defined and contains W(x,n)\x. Consequently, 

W(x,n) misses 1, and hence by the extra condition on O(x,n) 

(or U(x,n» it also misses xl. 
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2) xl has a right endpoint r and no left endpoint. The 

argument for this case is completely analogous to that for 

the preceding case. 

3) xl has a left endpoint 1 and right endpoint r. Fix 

n such that 1 E A(n), r E B(n) and x 2 ; St(X1,Wd(x ) (n». 
1 

Assume that d(x) ~ d(x ) and that W(x,n) is not containedl 

in x (Else argue as under 1)). Then W(x,n)\x is contained 

in either O(x,n) or U(x,n), so it misses either 1 or r, and 

hence W(x,n) n xl 0. It follows that in all possible 

cases x does not belong to St(xl,W(n)) for some n. So2 

n:=lSt(x,W(n)) = {x} for each x E X which proves the theorem. 

Note. In this proof p-, M-, or E-space can of course 

be replaced by any other property that together with the 

existence of a Go-diagonal implies metrizability in a GO­

space, as is clear from the proof. However, the condition 

cannot be dropped altogether; the lexicographic ordered 

square L is an example of a non-metrizable space while the 

equivalence relation Don L, defined by 

(x,y) lJ(x' ,y') <= > x = y ((x,y),(x',y') E L) 

satisfies (i) and (ii) in Theorem 1.2. 

2. Applications 

First we prove the following theorem. 

Theorem 1.2. Let X = (X,~,T) be a GO-space such that 

X = A U B where A and B are dense, metrizable subspaces of 

X. Then X is metrizable. 

Proof. We claim that a a-discrete (in A) subset of A 

is a-discrete in X. To prove this take a discrete (in A) 
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subset F of A. Since X is hereditarily collectionwise nor­

mal, there exists for each x E F an open (in X) convex 

neighbourhood U{x) of X such that U{x) n U{x') = 0 if x ~ x'. 

Since B is dense in X, {U{x) n Blx E F} is a disjoint col­

lection of non-empty open convex subsets of B. It follows 

from ([4], Theorem 2.4.5) that this collection can be written 

as u~=lO{n), where each O{n) is a discrete collection in B. 

Now put 

F{n): = {x E FIU{x) n B E O{n)} (n = 1,2, ... ). 

Then each F{n) is discrete in X and F = Un=lF{n). 

Hence each discrete subset of A is a-discrete in X, 

and the same holds for a a-discrete (in A) subset of A. Of 

course an analogous statement is true for a a-discrete (in 

B) subset of B. 

It follows that X has a a-discrete dense subset, since 

A has one; moreover E{X) c E{A) U E{B), and since both E{A) 

and E{B) are a-discrete in X, E{X) is a-discrete in X. 

Hence, X is metrizable by ([4], Theorem 3.1). 

We are now ready to prove Bennett and Lutzers theorem 

of [2] with the help of Theorem 1.2. Let X be a GO-space 

that is hereditarily a p-space or an M-space. It was proven 

in [2] that X is paracompact. Define an equivalence rela­

tion Yx on X by 

x~xy <==> the closed interval between x and y is 

compact (x,y E X) . 

By ([7], Theorem 2.1.3) the decomposition space x/yx is 

metrizable. Hence, to show that X is metrizable it suffices 

to show that each equivalence class is metrizable; and to 

show that an equivalence class G is metrizable, we only have 
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to prove, by paracompactness of X, that for x,y E G(x < y) 

the interval [x,y] is metrizable. 

Now fix C = [x,y] c X such that [x,y] is compact. We 

define another equivale~ce relation - on C by 

x - Y <==> the closed interval between x and y is 

metrizable (x,y E C). 

Clearly, each equivalence class is metrizable, so we have 

to prove that C': = C/- is metrizable. Note that C' is also 

a hereditary p-space since the quotient mapping is perfect. 

Now observe that C' is a compact, connected GO-space, 

since it cannot have neighbours by the definition of -. 

Suppose that C' consists of more than one point; then it is 

easy to define two disjoint dense subsets P and Q of C' such 

that P U Q = ct. Then P and Q are p-spaces; hence the quo­

tient spaces P/~p (~P) and Q/~Q(~Q) are metrizable by ([7], 

Theorem 2.1.3). Consequently C' is metrizable by Theorem 

2.1, and we are done. 

Another application of Theorem 1.2 lies in the field 

of generalized ordered E-spaces. A E-network for a space X 
00 

is a a-locally finite closed cover J = un=lJ(n) of X (where 

each J(n) is locally finite) with the following properties: 

(i) C(x): = n {Fix E F E J} is countably compact 

(ii) If U is an open set containing C(X) then there 

exists an F E J such that C(x) c FeU (x E X) 

A space that admits a E-network is called a E-space (Nagami, 

[ 5] ) • 

In [7] we proved the following fact about generalized 

ordered E-spaces: Define for a GO-space X an equivalence 
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relation L in the following way: 

xLy <=> the closed interval between x and y is a 

Lindelof-space (x,y EX), 

and let IX: = x/L be the quotie~t space. Again, IX is a 

GO-space, and we have 

Theorem 2.2. Let X = (X,~,T) be a paracompact GO-space. 

Then X is a L-space <=> IX is metrizable and each L E x/L 

has a L-network. 

Now the following facts are known about GO-spaces that 

are hereditarily L-spaces (see [7]): 

1) Let X be a GO-space that is a hereditary L-space. 

Then X is hereditarily paracompact. (Note that for instance 

the ordinal space wI is not a hereditary L-spacei a bi­

stationary set in wI is not a L-space). 

2) Let X be a GO-space that is both a L-space and 

hereditarily paracompact. Then X is first countable. 

Corollary. If X is a hereditarily L-space then X is 

first countable. 

Furthermore, we state the following theorem, without 

proof. 

Theorem 2.3. ([7], Theorem 4.1.3) Let X (X,~,T) be 

a perfectly normal GO-space. Then 

X is a L-spaae <==> X is an M-spaae. 

It is an unsolved problem whether a GO-space that is 

a hereditary L-space is metrizable. However, with the help 

of the facts stated above, we are able to prove that the 
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following conjectures are equivalent. 

Conjectupe I: Each GO-space that is a hepeditapy E-

space is metpizabZe. 

Conjectupe II: Each LindeZof GO-space that is a hepedi­

tapy E-space is hepeditapiZy LindeZof. 

That Conjecture II follows if Conjecture I holds, is 

trivial, so suppose that the second conjecture is true, and 

let X be a GO-space that is a hereditary E-space. By Theorem 

2.2.	 the quotient space lX is metrizable. Hence, by Theorem 

1.2. it is sufficient to prove that each L of the decomposi­

tion x/L is metrizable. By paracompactness of X we only 

have to prove this for each subset L' c L with two endpoints. 

Now let L' = [a,b) be a subset of some L E x/L. Then L' is 

Linde16f by the definition of L, and hence, by Conjecture II 

it is hereditarily Linde16f. Consequently, L' is perfectly 

normal so L' is an M-space by Theorem 2.3. Since the same 

applies to each subset of L', it follows from the Bennett-

Lutzer Theorem that L' is metrizable. Consequently, Conjec­

ture I holds. 
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