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Research Announcement 

THE TOPOLOGICAL STRUCTURE OF THE TANGENT 

AND COTANGENT BUNDLES ON THE LONG LINE 

PeterJ. Nyiko8 

The tangent bundle is, according to M. Spivak, "the 

true beginning of the study of differentiable manifolds" 

[3]. Given any differentiable n-manifold M, metrizable or 

otherwise, there is a differentiable 2n-manifold TM asso

ciated with it, called the tangent bundle of M. There are 

various constructions of TM, but all are equivalent as vec

tor bundles over M [3, Chapter 3]. 

Using the tangent bundle, one constructs the cotangent 

bundle T*M [3, Chapter 4], which is also a differentiable 

2n-manifold and, like TM, a vector bundle over M. If M is 

metrizable, the tangent and cotangent bundles are equivalent 

[3, Corollary 9-5]. The converse is also true [3, p. A-2l]. 

This announcement deals with the tangent bundles on the 

long line L and the (open) long ray L+. Aside from the real 

line and the circle, these are the only connected Hausdorff 

I-manifolds [3, Appendix Al. The definition and notation 

will be as in [3], where L+ is n x [0,1) - {<O,O>} with the 

lexicographic order topology, except that we denote ordered 

pairs by <, > instead of (, ), and points of the form <a, 0> 

will be denoted simply a when there is no danger of confusion. 

The long line and long ray are nonmetrizable, normal, 

countably compact, differentiable I-manifolds. The intrinsic 

importance of non-metrizable manifolds is a matter of some 

controversy, but the paucity of I-manifolds has made Land 



272 Nyikos 

L+ pedagogically useful, in bringing out the peculiarities 

of certain constructions; thei! tangent and cotangent bundles 

can serve a similar purpose. 

It is still an unsolved problem whether all differen

tiable structures on Land L+ are equivalent, but many re

suIts (including those in this paper) are common to all such 

structures. For example every bounded subspace of TL+, TL, 

T*L+ and T*L is metrizable, simply because that is true of 

Land L+. ("Subspace" is always meant here in a purely 

topological sense. There are natural projections (desig

nated ~) from TM to M and T*M to M for any manifold M. A 

subspace of TL, etc. is bounded if it is contained in 

~-l[-a,al for some countable ordinal a.) 

Theorem 1. An~ oolLection of countably many closed, 

+unbounded subspaces of TI, has nonempty intersection. 

L+ xIn contrast, {r} is a copy of the long ray in 

L+ x R for each r € R , and similarly for L x {r}. 

Corollary. The spaces TL and TL+ are collectionwise 

normal, countably paracompact, and wI-compact. 

A topological space is wI-compact if every closed dis

crete subspace is countable. Topological terms not defined 

here may be found in [1]. 

The key to proving most of the results announced here 

is the construction of a space (Z,J) homeomor~hic to TL+, 

which has L+ x R as its underlying set. This also aids in 

forming a rough.picture of TL+. For each limit ordinal A, 

the relative topology on [A, A + w) x R is; ~he usual 
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(product) topology, as is the relative topology on (O,w). 

In completing the definition of 5, we are guided by an 

atlas of charts (XA,U ) on L+, A a limit ordinal, such that
A

[A, A + w) c UA' and satisfying the following condition. 

Suppose {Pn: nEw} is an increasing sequence in L+, 

Pn E [An' An + w), converging to a limit ordinal A. [We do 

not require the An'S to be distinct.] Then D(X A X~l)0 

n 
(X (p» converges to O. Now, using the defini tion in [3,

An n 
Theorem 3-1], we make <p, s> E L+ x R Z correspond to 

the equivalence class of (xA's) in TI-l(p), where A is the 

unique zero-or-limit ordinal such that p E [A, A + w). We 

then have: 

Lemma 2. If {<p ,r >: nEw} is a sequence in (Z,J)
n n 

such that {p } is an increasing sequence in L+ converging
n 

to a limit ordinal A, and the sequence {r } is bounded, then n

Theorem 1 now follows from the well known, and easily 

proven, fact that the intersection of countably many closed 

unbounded subsets of n is again such a subset. 

The natural correspondences between the subspace 

L+ x {a} of Z, the space L+, and the set of zero vectors of 

TL+, are all homeomorphisms. When the set of zero vectors 

of TL+ is removed, the space falls into a "positive half" 

T+ and a negative half T-, both of which are open, simply 

connected submanifolds of TL+. 

Definition. A topological space X is collectionwise 

Hausdorff if for every closed discrete subspace D of X, 
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there exists a collection U of disjoint open subsets of X, 

each of which meets D in exactly one point, such that D c uU. 

Theorem 3. With notation as above, T+ is a developable, 

simply connected 2-manifold which is neither normal, nor 

countably paracompact, nor collectionwise Hausdorff, but 

does have the property that every separable subspace is 

metrizable. 

Besides Lemma 2, the following is used in proving the 

"negative" results about T+: 

Lemma 4. ("The Pressing Down Lemma." For a proof, 

cf. [2].) Let S be a stationary subset of n. Let f: S ~ n 
be such that f(a) < a for each a E S. Then there is a sta

tionary T c S and an ordinal a such that f(a) = a for each 

a E T. 

The results of Theorem 3, except for developability, 

carryover from T+ to the cotangent bundle T*L+, which can 

be pictured in the following way. Turn each of T+ and T

"upside down," gluing them back to the zero vectors this 

way. In fact: 

Theorem 5. Let ~ be the map from the space of nonzero 

vectors of TL+ to those of T*L+, such that the image of each 

vector v is the unique linear functional ~ such that ~(v) = 1. 

Then ~ is a diffeomorphism. 

Theorem 6. The space T*L is none of the following: 

normal, countably paracompact, collectionwise Hausdorff, 

developable. 
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These same descriptions, with L in place of L+, and 

"decreasing" in place of "increasing" where appropriate, 

hold for the spaces TL and T*L. If we identify v with ~(v) 

for each nonzero vector v, the images of the zero vectors 

in the resulting identification space Y give us two disjoint 

closed copies of the long line in Y which cannot be put into 

disjoint open subsets, because of Theorem 1. 

Theorem 7. The space Y is a non-normal, countably 

compact, differentiable 2-manifold. If N is a foliation of 

Y, then every component of N is metrizable. 

This theorem is of special interest to general topolo

gists, since it is only recently that a first countable, 

countably compact, non-normal space has been constructed with

out using the continuum hypothesis [4]. 

There are many other countably compact, non-normal 2

manifolds that one can construct by piecing together spaces 

homeomorphic to T+, L+, S1, I = [0,1], and the product space 

L+ x R. Some are simply connected and/or have the property 

that every continuous real-valued function is constant out

side a compact set. Some can be foliated, others can not. 
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