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TOPOLOGIES DETERMINED BY PATHS 

Stanley P. Franklin and Barbara V. Smith-Thomas 

1.	 Introduction 

We began this study by re-examining Franklin's proposi­

tion ([F4l, p. 56) relating A-generated spaces and the core­

flective hull of A in TOP, where A is some class of spaces. 

Recall that a space X is A-genepated if it has the property 

(analogous wi~h k-spaces) that a subset of X is closed if and 

only if its intersection with every A-subspace of X is closed, 

and that X is in the aope!leative hull of A if it is a quo­

tient of a disjoint sum of members of A. Franklin showed 

that if A is map-invariant, that is continuous images of 

A-spaces are A-spaces, then the A-generated spaces and the 

coreflective hull of A coincide. (The essential ideas may be 

found in [Fll.) From now on we will denote the subcategory 

of A-generated spaces by AGS, and the coreflective hull of 

A by TOP (A) . In the remainder of this section we make some 

observations about AGS for some connectedness properties A. 

We specialize in the next section to the path-generated 

spaces. The third section is devoted to the construction of 

an example of a space which is locally path connected and 

sequential, but which is not a quotient of paths. 

Two common examples of map invariant classes are C, the 

class of connected spaces, and PC, the class of path con­

nected spaces. From Franklin's theorem above we have CGS 

TOP (C) and PCGS = TOP (PC) • We first consider CGS: the con­

nectedly generated spaces are characterized as those spaces 
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whose components are open sets. Thi~ tells us that spaces 

in TOP(C) are not just quotients of disjoint sums of con­

nected spaces, they are actually disjoint sums of connected 

spaces. It also tells us that each locally connected space 

is connectedly generated. It is well-known that in TOP a 

coreflection is simply a strengthening of the topology; the 

characterization above tells us that the proper strengthening 

for the TOP(C) coreflection is obtained by declaring compo­

nents to be open. Since this process generates no new com­

ponents we are done after one step. Some other observations 

which can be made at this point are that being connectedly 

generated is not hereditary or even closed hereditary, but 

that open subsets are CGS if and only if the space is locally 

connected; CGS is finitely productive, and totally discon­

nected members of CGS are discrete. 

We now turn to PCGS. The situation is similar to CGS. 

A space in PCGS is one whose path components are open; such 

spaces are disjoint sums of path connected spaces. The core-

flection is obtained by declaring path components open. Since 

every path connected space is connected 

PCGS = TOP(PC) ~ TOP (C) = CGS. 

That the inclusion is proper is demonstrated by any connected 

space whose path components are not open, for example the 

positive sin(~) curve together with the non-positive x-axis 
x 

in R2 . Finally, we note that local path connectivity implies 

PCGS (since locally path connected implies path components 

of open sets are open), and that PCGS is finitely productive. 

2. Characterization ofT2 (?) =T2 (II) 

If we restrict our consideration to Hausdorff images the 
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Peano spaces, P, are map invariant. Members of PGS n T2 = 

T2(P), Hausdorff quotients of disjoint sums of Peano spaces, 

have the property that a subset is closed if and only if its 

intersection with every Peano subspace is closed. Since each 

Peano space is a quotient of the closed unit interval IT, we 

see that elements of T2(P) are actually quotients of disjoint 

sums of closed intervals, that is, T2(P) = T2(ll). The core­

flection in T2(ll) of an arbitrary space is obtained by declar­

ing all path closed subsets to be closed; this process does not 

disturb any paths so does not have to be iterated. Each member 

of T2(IT) is clearly sequential, and since local path connec­

tivity is preserved under taking disjoint sums and quotients, 

path generated implies locally path connected. (Characterize 

local path connectivity as "path components of open sets are 

open. ") We have argued: 

2.1 Proposition. T2 (ll) ~ LPC n Seq n T~. 

That this inclusion is proper is shown in the example 

of section 3. 

We next bracket T2(E) on the other side with a proper 

inclusion. 

2.2 Proposition. LPC n 1st countabZe nT2 ~ T2(ll) 

Proof. First, R with the integers identified to a 

point is a space in T2(ll) which is not first countable. 

Now, suppose X is a first countable, locally path con­

nected Hausdorff space and that F ~ X is path closed. Let 

x E clxF. Choose a countable nested neighborhood base at x 

consisting of path connected se~s, and a sequence in F, one 
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term from each of the neighborhoods, say xi E U i = 1,2, ••••
i

,
 

For each i, choose a path Pi [i, i;l] .... X such that Pi (il = xi'
 
111


Pi(i+l) = xi +l ' and Pi ([I' i+l]) ::: Ui • Now define a path 

p : [ 0 , 1 ] -+ X by 

p(tl = {:i(tl 
t o 

Since the Ui form a nested neighborhood base p is continuous. 

Since F is path closed F n p[O,l] is closed; hence, since 

each xi E F, so also x E F. Thus F is closed. 

This ability to run a path through (a subsequence of) a 

convergent sequence is precisely what is needed to go from 

sequential and locally path connected to path generated. 

Let us say that a space has the subsequence-path property if 

every convergent sequence contains a subsequence through 

which a path can be run. 

2.3 Theorem. A Hausdorff sequential space is in T2(ll) 

if and only if it has the subsequence-path property. 

Proof. Suppose X is sequential and has the subsequence­

path property. Suppose also that F =X is path closed; it 

suffices to show that F is sequentially closed. So let (xi) 

be a sequence in F converging to a point x E X. Take a sub­

sequence (x. ) and let p: II -+ X be the path through the sub­
l.k 

sequence. Then F n p [II] is closed in p [II] and contains 

each x. • It follows that x E F. 
l.k 

Conversely suppose X is in T2(II), and suppose the se­

quence (xi) converges to x. If (xi) contains a constant sub­

sequence we're done, so we may assume that (xi) consists of 

distinct points, none of them equal to x. What we are 
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asserting is that there is a path containing infinitely many 

of the points xi. If this were not the case then {x.} n p [II ]
1. 

would be closed for every path p, and thus {xi} would be 

closed, which it is not. (By abuse of notation, {xi} is 

shorthand for the set {xi}:=l of terms of the sequence (xi).) 

Observe that the assumption that X be sequential cannot 

be dropped from this theorem. For, II c is a non-sequential 

space with the subsequence-path property, as is any locally 

convex topological vector space which is not sequential. 

3.	 Example 

We are now ready to show that the inclusion T2(II) ~ LPC 

n Seq n T2 is proper. We start with the space S2 of Arens 

[A]. This space consists of a sequence (si)' the level one 

points, converging to the level zero point, so' and for each 

si' a sequence (sij) converging to si. The points Sij are 

called the level two points. S2 carries the quotient 

topology: the points s .. are isolated; a basic neighborhood
1.J 

of a	 point s. contains a tail of the sequence (s .. ); and a 
1.	 1.J 

basic neighborhood, U, of So contains a tail of the sequence 

(si)' plus for each si E U a tail of the sequence (sij). 

This	 space is the canonical sequential but not Frechet space 

[F3]. Observe that S2 fails to be first countable at so. 

Index a neighborhood base at So as {Uala E A}. (It will be 

convenient to assume S2 itself is in this collection; we so 

assume.) For each a let C be the pathwise connectification 
a 

(see	 [W]. problem 27C) of Un. It consists of U with aa 

closed interval attached to each point and with all the oppo­

site	 ends of all the intervals identified. We call C the a 
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pseudocone on U , and we call its vertex va. Let X be the a 

quotient set of the disjoint sum of the cats obtained by 

identifying various occurrences of the same point of S2. 

We will topologize X by describing basic neighborhoods of 

various types. 

a) A point interior to an interval of a pseudocone has 

a usual basis of open intervals. 

b) A basic neighborhood of a vertex va will contain an 

interval (x, val down each interval terminating at va. (Note 

that the XiS are independent.) 

c) A level 2 point of S2 will have basic neighborhoods 

containing intervals [s .. , y) (independent y's) up each in­
1] 

terval emerging from s ... 
1] 

d) A level one point si will have basic neighborhoods 

containing a tail of the sequence (s .. ) and for each s .. 
1]	 1] 

in that tail, and also for S1" an interval [s .. , y) (resp.
1] 

[Si'	 y» along each interval emerging from Sij' (resp. si). 

e) A basic neighborhood of So will contain some U ,a 

the whole pseudocone C for each S such that Us ~ U , and s a 
for each x E U , a "whisker" [x, y) up each of the remaininga 

intervals attached to x. 

The set X with this topology is path connected, and 

locally path connected except at the level one points of S2. 

To make it locally path connected at the level one points we 

add countably many closed unit intervals Ii' identifying 

o E I. with S1' and each ~ E I. with s giving the result ­
1 ] 1 ij' 

ing set, T, the quotient topology. 

Now	 a routine case-by-case consideration shows that T is 

Hausdorff. That T fails to be sequential is seen by 
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considering the collection {vulu E A}. This set has So in 

its closure, and is thus not closed, but meets every con­

vergent sequence in a closed set. 

We ignore for the moment the fact that T is not se­

quential, and argue that it fails to have the subsequence-

path property. The sequence we want is (si)' the level one 

points. We show that any function p: [0,1] ~ T which has 

infinitely many level one points in its image must fail to be 

continuous. So suppose there is a subsequence (s. ) of (s;) 
1.k • 

such that for each k, sik =. p(tk ), where t is some point ofk 

ll. Without loss of generality we may assume that the t 
k 

are a convergent sequence say with limit t. Now, if p is to 

have any hope of being continuous, between t and t + therek k l 

must be an such that perk) = v ; the r will also be ar k uk k 

convergent sequence with t as their limit. Since {v } is 
uk 

closed in T, if p were continuous we would have pet) E {v}.
uk 

But, (s. ) (P(tk» converges to so' so we would also have 
1.k 

pet) = so' a contrapiction. 

To make T sequential we now introduce another layer of 

points and paths "between" the pseudocones C and so. The u 

basic idea is to provide sequential limits for the countable 

subsets of T which should but do not have sequential limits, 

and to do so in such a way that there is still no path 

through (si)' and so that the resulting space HE will be 

sequential. The construction is modeled on Isbell's space 

~ (see [G-J], problem 51). Let S denote the subset of T 

consisting of S2 and the closed intervals Ii running through 

the sequences (s .. ) which provided the local path connectivity
1.J 

at the level one points si. T is not sequential because a 
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subset of T\S which consists of exactly one point from 

each of uncountably many pseudocones C can have So in its a 
closure, but any countable subset of such a set is closed. 

Denote the interval connecting x E S2 with va by I xa 

and consider the collection of all countable subsets 

{Yk lYk E I } of T\S with the following properties: all
xkQk 

the E S2\{so} are distinct (that is, if k ~ k' thenxk 

xk ~ xk ' unless both are so), all the Qk are distinct, and 

for each i, ({s.} U {so .}~ 1) n {xk } is finite. Let U be a
1 1J J= 

maximal almost disjoint subset of this collection. Elements 

of U will be denoted by upper case Roman letters, O,E,F, etc. 

They have the following properties: ~ O,E E U, D n E is 

finite; if Y is a subset of T\S which meets infinitely many 

I with distinct ak' with x unless both equal so'~xkQk k xk ' 

and where, unless all but finitely many of the theyxk = so' 

are taken from infinitely many ({si} U {Sij}j=l), then there 

is a D E D such that D n Y is infinite. To T we add 0 as a 

new set of points. For each D E U we add an arc AD connecting 

D with so. We index 0 as D = {zl,z2'···} and add a path Po 
1through D to the point D so that PD(I) = zi and PD(O) = D. 

Except at So we give this new space, HE, the quotient topology. 

Specifically we have the following types of basic neighbor­

hoods at the following types of points: 

a) Points of 5\52 , points in the interiors of the arcs 

AD, and points in PO,({zi} U {oJ) have a base of usual in­

terval neighborhoods. 

b) To a T-neighborhood of a point s .. , which consists
1J 

of an interval in I. and intervals [s .. , Y) in each pseudo­
1 1J 

cone C containing s .. , we must add an interval in every path
Q 1J 
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PD passing through each z E [s .. , y) for every such [s .. , y).
~J ~J 

c) To a T-neighborhood of a point si' we must add an 

interval in every PD passing through each z in any interval 

[s .. , y) or [si' y) already in the neighborhood.
~J 

d) For points interior to the intervals of the pseudo-

cones C we add to the interval neighborhoods of T similar a 

intervals in each path PD which passes through the T-neigh­

borhood. 

e) Similarly, for a vertex va we must add to each 

T-neighborhood a subinterval in each path PD passing through 

the neighborhood. 

f) For a basic neighborhood of a point D E j) take a 

1tail of the path PD plus for every zi = PD (r) a basic neigh­

borhood of type d) or e) above plus an interval which con­

tains D in the arc AD. 

Note that since j) is an almost disjoint collection, 

points of j) have disjoint neighborhoods in HE, and that j) 

with the subspace topology is discrete. 

Finally, we describe the basic neighborhoods of So in 

HE. We want to make HE sequential, to preserve the "no path 

through (si)" property, and at the same time to make the 

neighborhoods path connected. So let 

g) A basic neighborhood of So be a T-neighborhood of 

So plus the following additional points: all but finitely 

many D E V, for each such D the whole arc AD plus a tail of 

the path PD' for the finitely many excluded E E V a "whisker" 

(tE,so] in AE, and for any z which is now in the neighborhood 

a subinterval containing z in any path P which passes throughF 

z. 
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Let us first show that the "no path through (si)" 

property is retained. As before suppose that p: [0,1] ~ HE 

with p(tk ) = sik and t k ~ t. One cannot now argue that to 

have any hope of continuity p must pass through vertices of 

pseudocones, but it is true that p would have to assume some 

value zk in some pseudocone C ' say zk = P(+k) where r is
Uk k 

between t k and t k+l , and so again r ~ t. We can assume,k 

without loss of generality that zk is either in the interior 

of the interval connecting s. with v ,or else in the in­
l.k uk 

terior of the interval connecting some s .. with v If 
1.kJ uk 

{zi} meets infin£tely many pseudocones, then {zi} has infi­

nite intersection with some D E il so there is a subsequence 

of {z.} which converges to D. If, on the other hand {z.}
1. 1. 

meets only finitely many pseudocones, then cl{z.} is a subset 
1. 

of their union. In either case it follows that p cannot be 

continuous. 

Since each of the neighborhoods in a) through g) above 

is path connected, HE is locally path connected. Also it is 

clear that HE is Tl. A 27 case analysis shows that HE is 

T2. We omit the proof; it is tedious but routine. 

We now turn to showing that HE is sequential. ~o let 

J ~ HE be sequentially closed, i.e. if x. + x with each x. EJ,
1. 1. 

then x E J; and let x E ClHEJ. If x is a point of type a), 

that is x E S\S2' x E AD\{D,so}' or x E PD\({zi} U {D}), 

then x is a point of first countability so there is a sequence 

in J converging to x, and thus x E J. 

If x is a point of type b)-f), then a basic neighborhood 

at x is a quotient of open and half-open intervals, such a 

neighborhood U is sequential. Thus J n U is_closed in U. 
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It follows that x E J. It remains to consider the case 

where x = 5. We first take care of the two simplest possi­
o 

bilities s E cl(J n I ) for some a or 50 E cl(J n AD) for 
o soa 

some D: that is, s E clJ because J "goes all the way down" 
o 

some interval attached to so. In this case there is a se­

quence in J converging to so. The next possibility is that 

J n D is infinite. In this case, since 0 U {so} is the one­

point compactification of 0 any sequence of distinct points 

from J n 0 converges to s. Similarly, if J meets infinitely
o 

many of the arcs AD' then there is a sequence in J converging 

to so. If So E clHE(J n S) = cls(J n S) then So E J since S 

is sequential and J is sequentially closed. 

We will conclude by arguing that if none of the five 

possibilities listed above occurs, and if J is sequentially 

closed then So ~ clJ. Observe first that since s ~ cl(J n S)
o 

there is a U such that J nTis bounded away from s. or s .. 
ao 1. J.J 

in every I Q or I Q for all S and all s., s .. in U 
si'~ Sij'~ 1. 1.J a o 

Next observe that J can travel to the D end of at most fi­

nitely many paths PD. We claim that this implies there is a 

U so that J meets only countably many pseudocones C with
al a 

UN ~ U , call them eN.' i = 2,3,4,···. For if not the subset 
\.A. 0.1 \.A. 1, 

Y = {y E 821J n I ~ ~ for uncountably many a} contains s in ya 0 

its closure. And then, if So E Y, choose a point in J n I 
soa 

for each a such that J n I ~~. This set travels to the D 
soa 

end of uncountably many PD' and hence so does J. While if 

So ¢ Y then there is a sequence of integers i k so that Y n 

( { 5. } u {s. .}~ 1') ~ ~. Let xk E Y n ({ s. } u {s . .}). Then
1.k 1.kJ J= 1.k J.kJ 

for each k the collection of a such that I n J ~ ~ is uncounta­
?'ka 

ble so we can choose uncountably many sequences (ak ) so that 
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all the ak's are distinct and I n J ~~. Hence we can 
xka k 

choose uncountably many pairwise disjoint sequences (zk) so 

that for each k, zk E (I n J). Now these sequences
xkak 

satisfy the defining properties of the maximal almost 

disjoint family U so each travels to the end of some PD' that 

is, again J travels to the D end of' infinitely many paths PD. 

Choose V ~ V n V so that V contains none of the 
y a o al y 

neighborhoods Va.' i 2,3,4,···. We build a neighborhood 
1. 

of So missing J: The T-neighborhood we start with is based 

on V • The pseudocones Ca with Va ~ V are all distinct y y 

from the C meeting J. Since J nTis bounded away from s ,
ai 0 

s., S.o for each such point in V we can add the necessary
1. 1.] Y 

whiskers [s , y), [s., y), and [so 0' y). To this T-neighbor­o 1. 1.] 

hood we add all points of U except the finitely many for which 

J travels to the D end of PD or meets AD. For each D so in­

cluded we can add the arc AD and a tail of the path PD. 

Since J is bounded away from So in all the remaining arcs ~ 

we can add a whisker (tE, so] in each such AE• Finally, 

since J is sequentially closed, around any z now in the 

neighborhood we can find a subinterval missing J and contain­

ing z in any path PF passing through z, and add all these 

subintervals to the neighborhood. The neighborhood so con­

sbructed misses J entirely. It follows that HE is sequential, 

and is thus the promised example of a sequential and locally 

path connected, Hausdorff space which is not in TOp(rr). 

4. Some Further Observations and Questions 

Obsepvation 4.1. The space HE fails to be Frechet since 

it contains 8 as a closed subspace. In fact, the sequential2 
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order [A-F] of HE is 4. For each point Z over some s .. in some 
1J 

given Ca \5 choose a deleted z-neighborhood in some PO passing 

through z so that no other point of T is in the closure of 

the chosen neighborhood. The union of these deleted z-neigh­

borhoods has So in its closure; it takes four steps to reach 

So by sequential limits. 

This leads to 

Question 4.2. Does locally path connected plus Frechet 

imply path generated? 

We note that there are path generated spaces which are 

not Frechet, so equality cannot hold. Take the space S, run 

a path through (si) to So and give the resulting space the 

quotient topology. This produces an interval version of 52 

which is in TOP(ll) but is not Fr~chet. 

Observation 4.3. HE fails to be regular: Let is .. }
1kJ k 

be an infinite subset of 52 such that if k ~ k', i ~ ikek 

and such that each S. . is in uncountably many U. Then 
1kJk a 

any HE neighborhood of is .. } has s in its closure. 
1kJ k 0 

Question 4.4. Is it true that every regular (normal, 

compact) sequential, locally path connected space is in 

TOP(IT)? To make HE Hausdorff we had to allow many countable 

subsets of T to fail to have cluster points, so perhaps the 

right question is, "Is every Hausdorff, countably compact, 

sequential, and locally path connected space in TOp(rr)?" 

The following questions were suggested by the referee: 
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Question 4.5. Is there a locally pathwise connected 

regular space which" does not have the subsequence-path 

property? 

Question 4.6. Is there a topological vector space 

(necessarily not locally convex) which does not have the 

subsequence-path property? 
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