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TOPOLOGIES DETERMINED BY PATHS

Stanley P. Franklin and Barbara V. Smith-Thomas

1. Introduction

We began this study by re-examining Franklin's proposi-
tion ([F4], p. 56) relating A-generated spaces and the core-
flective hull of A in TOP, where A is some class of spaces.
Recall that a space X is A-generated if it has the property
(analogous with k-spaces) that a subset of X is closed if and
only if its intersection with every A-subspace of X is closed,
and that X is in the coreflective hull of A if it is a quo-
tient of a disjoint sum of members of A. Franklin showed
that if A is map-invariant, that is continuous images of
A-spaces are A-spaces, then the A-generated spaces and the
coreflective hull of A coincide. (The essential ideas may be
found in [Fl].) From now on we will denote the subcategory
of A-generated spaces by AGS, and the coreflective hull of
A by TOP(A). 1In the remainder of this section we make some
observations about AGS for some connectedness properties A.
We specialize in the next section to the path~generated
spaces. The third section is devoted to the construction of
an example of a space which is locally path connected and
sequential, but which is not a quotient of paths.

Two common examples of map invariant classes are C, the
class of connected spaces, and PC, the class of path con-
nected spaces. From Franklin's theorem above we have CGS =
TOP(C) and PCGS = TOP(PC). We first consider CGS: the con-

nectedly generated spaces are characterized as those spaces
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whose components are open sets. This tells us that spaces
in TOP(C) are not just quotients of disjoint sums of con-
nected spaces, they are actually disjoint sums of connected
spaces. It also tells us that each locally connected space
is connectedly generated. It is well-known that in TOP a
coreflection is simply a strengthening of the topology: the
characterization above tells us that the proper strengthening
for the TOP(C) coreflection is obtained by declaring compo-
nents to be open. Since this process generates no new com-
ponents we are done after one step. Some other observations
which can be made at this point are that being connectedly
generated is not hereditary or even closed hereditary, but
that open subsets are CGS if and only if the space is locally
connected; CGS is finitely productive, and totally discon-
nected members of CGS are discrete,

We now turn to PCGS. The situation is similar to CGS.
A space in PCGS is one whose path components are open; such
spaces are disjoint sums of path connected spaces. The core-
flection is obtained by declaring path components open. Since
every path connected space is connected

PCGS = TOP(PC) <« TOP(C) = CGS.

That the inclusion is proper is demonstrated by any connected
space whose path components are not open, for example the
positive sin(%) curve together with the non-positive x-axis
in Hz. Finally, we note that local path connectivity implies
PCGS (since locally path connected implies path components

of open sets are open), and that PCGS is finitely productive.

2. Characterization of T2 (?) = T2 (II)

If we restrict our consideration to Hausdorff images the
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Peano spaces, 7

, are map invariant. Members of PGS N T2 =
T2(P), Hausdorff quotients of disjoint sums of Peano spaces,
have the property that a subset is closed if and only if its
intersection with every Peano subspace is closed. Since each
Peano space is a quotient of the closed unit interval I, we
see that elements of T2(P) are actually quotients of disjoint
sums of closed intervals, that is, T2(P) = T2(I). The core-
flection in T2(II) of an arbitrary space is obtained by declar-
ing all path closed subsets to be closed; this process does not
disturb any paths so does not have to be iterated. Each member
of T2(II) is clearly sequential, and since local path connec-
tivity is preserved under taking disjoint sums and quotients,
path generated implies locally path connected. (Characterize

local path connectivity as "path components of open sets are

open.") We have argued:
2.1 Proposition. T2(Ix) < LPC N Seq N T2.

That this inclusion is proper is shown in the example
of section 3.
We next bracket T2(I) on the other side with a proper

inclusion.

2.2 Proposition. LPC N lst countable NT2 ¢ T2(I)

Proof. First, R with the integers identified to a
point is a space in T2(II) which is not first countable.

Now, suppose X is a first countable, locally path con-
nected Hausdorff space and that F € X is path closed. Let
x € cle. Choose a countable nested neighborhood base at x

consisting of path connected sets, and a sequence in F, one
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term from each of the neighborhoods, say x; € Ui’ i=1,2,+e..
. } 1 1 1
For each i, choosea.pathpi[f, IIT] + X such that pi(I) = x
1 - 1 1 .
pi(ITT) = X1 and pi([f’ I:T]) < Ui' Now define a path

i’
p: [0,1] + X by
1 1
p. (t) t €[5 =1
plt) = 1 i’ i+l
x t =0 :
Since the U form a nested neighborhood base p is continuous.

Since F is path closed F n pl0,1] is closed; hence, since

each x5 € F, so also x € F. Thus F is closed.

This ability to run a path through (a subsequence of) a
convergent sequence is precisely what is needed to go from
sequential and locally path connected to path generated.

Let us say that a space has the subsequence-path property if
every convergent sequence contains a subsequence through

which a path can be run.

2.3 Theorem. A Hausdorff sequential space is in T2(IL)
if and only if it has the subsequence-path property.

Proof. Suppose X is sequential and has the subsequence-
path property. Suppose also that F = X is path closed; it
suffices to show that F is sequentially closed. So let (xi)
be a sequence in F converging to a point x € X. Take a sub-
sequence (xik) and let p: I + X be the path through the sub-
sequence. Then F N p[IO0] is closed in p[II ] and contains
each xik. It follows that x € F.

Conversely suppose X is in T2(II), and suppose the se-
guence (xi) converges to x. If (xi) contains a constant sub-
sequence we're done, so we may assume that (xi) consists of

distinct points, none of them equal to x. What we are
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asserting is that there is a path containing infinitely many
of the points x;. If this were not the case then {xi} n plrl
would be closed for every path p, and thus {xi} would be
closed, which it is not. (By abuse of notation, {xi} is

shorthand for the set {xi}:=l of terms of the sequence (xi).)

Observe that the assumption that X be sequential cannot
be dropped from this theorem. For, o€ is a non-sequential
space with the subsequence-path property, as is any locally

convex topological vector space which is not sequential.

3. Example

We are now ready to show that the inclusion T2(II) < LPC
N Seq N T2 is proper. We start with the space S2 of Arens
[A]l]. This space consists of a sequence (si), the level one
points, converging to the level zero point, Sy and for each
s;, a sequence (sij) converging to s, - The points Sij are
called the level two points. 82 carries the quotient
topology: the points sij are isolated; a basic neighborhood
of a point s; contains a tail of the sequence (sij); and a
basic neighborhood, U, of S, contains a tail of the sequence
(si), plus for each s; €U a tail of the sequence (sij).

This space is the canonical sequential but not Fréchet space

[F3]. Observe that S, fails to be first countable at Soe

2
Index a neighborhood base at s_ as {U [a € A}. (It will be
convenient to assume 52 itself is in this collection; we so
assume.) For each a let Ca be the pathwise connectification
(see [W], problem 27C) of Ua' It consists of Ua with a

closed interval attached to each point and with all the oppo-

site ends of all the intervals identified. We call Ca the
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pseudocone on Ua’ and we call its vertex Vo Let X be the
quotient set of the disjoint sum of the Ca's obtained by
identifying various occurrences of the same point of S,-
We will topologize X by describing basic neighborhoods of
various types.

a) A point interior to an interval of a pseudocone has
a usual basis of open intervals.

b) A basic neighborhood of a vertex vy will contain an
interval (x, Va] down each interval terminating at Ve (Note
that the x's are independent.)

c) A level 2 point of S, will have basic neighborhoods

2
containing intervals [sij’ y) (independent y's) up each in-
terval emerging from sij'

d) A level one point S5 will have basic neighborhoods
containing a tail of the sequence (sij) and for each sij
in that tail, and also for S;, an interval [sij' y) (resp.
[si, y)) along each interval emerging from sij' (resp. si).

e) A basic neighborhood of S, will contain some Ua’
the whole pseudocone CB for each B such that UB = Ua' and
for each x € U,r a "whisker" [x, y) up each of the remaining
intervals attached to x.

The set X with this topology is path connected, and
locally path connected except at the level one points of S2'
To make it locally path connected at the level one points we
add countably many closed unit intervals Ii’ identifying
0 € I, with s; and each % € I, with sij’ giving the result-
ing set, T, the quotient topology.

Now a routine case-by-case consideration shows that T is

Hausdorff. That T fails to be sequential is seen by
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considering the collection {vd|a € Al. This set has S, in
its closure, and is thus not closed, but meets every con-
vergent sequence in a closed set.

We ignore for the moment the fact that T is not se-
quential, and argue that it fails to have the subsequence-
path property. The sequence we want is (si), the level one
points. We show that any function p: [0,1] » T which has
infinitely many level one points in its image must fail to be
continuous. So suppose there is a subsequence (Sik) of (si)
such that for each k, s. = p(tk), where tk is some point of

1k
II. Without loss of generality we may assume that the tk
are a convergent sequence say with limit t. Now, if p is to
have any hope of being continuous, between tk and tk+l there

must be an I, such that p(rk) = v“k

; the I will also be a
convergent sequence with t as their limit. Since {va } is
closed in T, if p were continuous we would have p(t) € {vak}.
But, (sik) = (p(ty)) converges to Sor SO we would also have
p(t) = s_, a contradiction.

To make T sequential we now introduce another layer of
points and paths "between" the pseudocones Ca and Sq* The
basic idea is to provide sequential limits for the countable
subsets of T which should but do not have sequential limits,
and to do so in such a way that there is still no path
through (si), and so that the resulting space HE will be
sequential. The construction is modeled on Isbell's space
Y (see [G-J], problem 5I). Let S denote the subset of T

consisting of S, and the closed intervals Ii running through

2
the sequences (sij) which provided the local path connectivity

at the level one points S;- T is not sequential because a
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subset of T\S which consists of exactly one point from
each of uncountably many pseudocones Ca can have So in its
closure, but any countable subset of such a set is closed.
Denote the interval connecting x € S2 with vy by Iio
and consider the collection of all countable subsets
{yk|yk € ka“k} of T\S with the following properties: all

the x, € 52\{50} are distinct (that is, if k # k' then

k
Xy # Xy unless both are so), all the a, are distinct, and

for each i, ({si} U {sij};=l) n {xk} is finite. Let J be a
maximal almost disjoint subset of this collection. Elements
of J will be denoted by upper case Roman letters, D,E,F, etc.
They have the following properties: Vv D,E € J, D N E is
finite; if Y is a subset of T\S which meets infinitely many
ka“k with distinct Oper with X # X unless both equal Sor
and where, unless all but finitely many of the X, = Sgr they
are taken from infinitely many ({si} 1] {sij};=l)' then there
is a D € J such that D N Y is infinite. To T we add 7 as a
new set of points. For each D ¢ 7 we add an arc AD connecting
D with s . We index D as D = {zl,zz,---} and add a path p,

through D to the pocint D so that pD(%) = z, and pD(O) = D.

i
Except at s, we give this new space, HE, the quotient topology.
Specifically we have the following types of basic neighbor-
hoods at the following types of points:

a) Points of S\Sz, points in the interiors of the arcs
A, and points in PD\({zi} U {D}) have a base of usual in-
terval neighborhoods.

b) To a T-neighborhood of a point sij' which consists

of an interval in Ii and intervals [sij' Y) in each pseudo-

cone Ca containing sij' we must add an interval in every path
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Pp passing through each z € [Sij' y) for every such [sij' y).

c) To a T-neighborhood of a point s;, We must add an
interval in every Pp passing through each z in any interval
[Sij’ y) or [si, y) already in the neighborhood.

d) For points interior to the intervals of the pseudo-
cones Ca we add to the interval neighborhoods of T similar
intervals in each path Pp which passes through the T-neigh-
borhood.

e) Similarly, for a vertex v, we must add to each
T-neighborhood a subinterval in each path Pp passing through
the neighborhood.

f) For a basic neighborhood of a point D € # take a
tail of the path Pp plus for every z, = pD(%J a basic neigh-
borhood of type d) or e) above plus an interval which con-
tains D in the arc AD.

Note that since ) is an almost disjoint collection,
points of & have disjoint neighborhoods in HE, and that 2
with the subspace topology is discrete.

Finally, we describe the basic neighborhoods of Sq in
HE. We want to make HE sequential, to preserve the "no path
through (si)“ property, and at the same time to make the
neighborhoods path connected. So let

g) A basic neighborhood of So be a T-neighborhood of
So plus the following additional points: all but finitely
many D € 0, for each such D the whole arc AD plus a tail of
the path Py’ for the finitely many excluded E € J a "whisker”
(tE,SO] in AE' and for any z which is now in the neighborhood
a subinterval containing z in any path PF which passes through

z.
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Let us first show that the "no path through (si)"
property is retained. As before suppose that p: [0,1] - HE
with p(tk) = sik and tk + t. One cannot now argue that to
have any hope of continuity p must pass through vertices of
pseudocones, but it is true that p would have to assume some
Kk x is

and so again r, > t. We can assume,

value zy in some pseudocone Cak' say z

between tk and tk+1’

without loss of generality that z, is either in the interior

= p(rk) where r

of the interval connecting sik with v“k' or else in the in-

terior of the interval connecting some s,

with v . If
lk] ak

{zi} meets infinitely many pseudocones, then {zi} has infi-
nite intersection with some D ¢ J so there is a subsequence
of {zi} which converges to D. If, on the other hand {zi}
meets only finitely many pseudocones, then cl{zi} is a subset
of their union. 1In either case it follows that p cannot be
continuous.

Since each of the neighborhoods in a) through g) above
is path connected, HE is locally path connected. Also it is
clear that HE <8 Tl. A 27 case analysis shows that HE {s
TZ2. We omit the proof; it is tedious but routine,.

We now turn to showing that HE is sequential.  So let
7 € HE be sequentially closed, i.e. if x; + x with each x; €7,
then x € #; and let x ¢ CIHE}' If x is a point of type a),
that is x € S\S,, x € AD\{D,SO}, or x € pD\({zi} u {p}),
then x is a point of first countability so there is a sequence
in F converging to x, and thus x € 7.

If x is a point of type b)-f), then a basic neighborhood
at x is a quotient of open and half-open intervals, such a

neighborhood U is sequential. Thus F N U is.closed in U.
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It follows that x € F. It remains to consider the case

where x = Sq¢ We first take care of the two simplest possi-
bilities s € cl(F n Isoa) for some o or s € cl(#n Ap) for
some D; that is, S, € clF because 7 "goes all the way down"
some interval attached to S+ In this case there is a se-
quence in F converging to S+ The next possibility is that

7 N D is infinite. 1In this case, since 7 u {so} is the one-
point compactification of J any sequence of distinct points
from 7 N ) converges to s,- Similarly, if 7 meets infinitely

many of the arcs A_, then there is a sequence in 7 converging

D’
tos . If s  €clg(FNsS)=clg(Fns) thens ¢ 7 since S
is sequential and 7 is sequentially closed.

We will conclude by arguing that if none of the five
possibilities listed above occurs, and if 7 is sequentially
closed then s ¢ clf. Observe first that since S5 ¢ cl(F n s)

there is a Uy such that 7 N T is bounded away from s; or sij
o
in every I or I for all B and all s,, s,. in U_ .
si.8 sij,B i ij Ggo
Next observe that 7 can travel to the D end of at most fi-

nitely many paths Pp- We claim that this implies there is a
Ual so that 7 meets only countably many pseudocones Ca with

cu

ay’ call them Ca-' i=2,3,4,++. PFor if not the subset
1

Ua
Y = {y € SZ|] n Iya # ¢ for uncountably many a} contains s_ in

its closure. And then, if s, € Y, choose a point in 7 n I

S50

for each o such that 7 n I, . # ¢. This set travels to the D
o
end of uncountably many Py’ and hence so does 7. While if

S, ¢ Y then there is a sequence of integers i, so that Y n

k

({sik} u {s, }j=1) # ¢. Let x,_ € YN ({sik} 1] {sikj}). Then

ix] k
for each k the collection of a such‘thatkaa n ## ¢ is uncounta-

ble so we can choose uncountably many sequences (ak) so that
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all the ak's are distinct and I N7 #¢. Hence we can
xkak

choose uncountably many pairwise disjoint sequences (zk) so

that for each k, z, € ( n 7. Now these sequences

k
satisfy the defining properties of the maximal almost

I
XkOk

disjoint family 7 so each travels to the end of some Py’ that
is, again F travels to the D end of infinitely many paths Py

Choose U £ U nu so that U contains none of the
Y () aq Y

o}

neighborhoods Uu-' i=2,3,4,*+. We build a neighborhood
i

of So missing #: The T-neighborhood we start with is based
on UY' The pseudocones CB with UB c UY are all distinct

from the Ca- meeting 7. Since 7 N T is bounded away from So
i

s., S for each such point in UY we can add the necessary

i ij

whiskers [so, y), Is.

i Y and [sij' y). To this T-neighbor-

hood we add all points of 7 except the finitely many for which

7 travels to the D end of Py or meets A For each D so in-

D*
cluded we can add the arc AD and a tail of the path Pp-
Since 7 is bounded away from S, in all the remaining arcs Ag

we can add a whisker (tE, so] in each such A Finally,

E*
since 7 is sequentially closed, around any z now in the
neighborhood we can find a subinterval missing 7 and contain-
ing z in any path Pp passing through z, and add all these
subintervals to the neighborhood. The neighborhood so con-
structed misses 7 entirely. It follows that HE is sequential,

and is thus the promised example of a sequential and locally

path connected, Hausdorff space which is not in TOP(II ).

4. Some Further Observations and Questions

Observation 4.1. The space HE fails to be Fréchet since

it contains S2 as a closed subspace. In fact, the sequential
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order [A-F] of HE is 4. For each point z over some s.. in some
given ca\s choose a deleted z-neighborhood in some Pp passing
through z so that no other point of T is in the closure of

the chosen neighborhood. The union of these deleted z-neigh-
borhoods has S, in its closure; it takes four steps to reach

So by sequential limits.

This leads to

Question 4.2. Does locally path connected plus Fréchet

imply path generated?

We note that there are path generated spaces which are
not Fréchet, so equality cannot hold. Take the space §, run
a path through (si) to Sg and give the resulting space the
quotient topology. This produces an interval version of S2

which is in TOP(II ) but is not Fréchet.

Observation 4.3. HE fails to be regular: Let {si j }
k' k

be an infinite subset of S, such that if k # k', i

2 k # ik'

and such that each sikjk is in uncountably many Ua' Then
any HE neighborhood of {sikjk} has s in its closure.
Question 4.4. Is it true that every regular (normal,
compact) sequential, locally path connected space is in
TOP(II)? To make HE Hausdorff we had to allow many countable
subsets of T to fail to have cluster points, so perhaps the
right question is, "Is every Hausdorff, countably compact,

sequential, and locally path connected space in TOP(II)?2"

The following guestions were suggested by the referee:
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Question 4.5, Is there a locally pathwise connected
regular space which does not have the subsequence-path

property?

Question 4.6. Is there a topological vector space
(necessarily not locally convex) which does not have the

subsequence-path property?
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