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ISOMORPHISMS OF SOME
 

COMPLETIONS OF C(X)
 

Anthony W. Hager 

C(X) is the ring or vector lattice of real valued con­

tinuous functions on the Tychonoff space X, and C*(X) is the 

substructure of bounded functions. Most canonical comple­

tions of these can be realized as or in certain direct 

limits C[S(X)] = lim{C(S) Is E SeX)}, Sex) being a filter 
-+ 

base of dense sets in X. 

For example, when X is a Baire space, the Dedekind-

MacNeille completion of C*(X) is C*[~o(X)], ~o(X) being the 

dense Go's [WI]' [FGL]. This readily implies that a homeo­

morphism ~o(Y) 3 S r T E ~o(X) induces an isomorphism 

C*[Yo(Y)] t C*[Yo(X)] of completions, by ~(f) = f L0 

(roughly speaking). We prove here a converse: 

(I) An isomorphism of the Dedekind-MacNeille completions of 

C*(Y) and C*(X) is induced by a homeomorphism of dense Go's, 

provided X and Yare completely metrizable (or a bit more 

generally) . 

Likewise, with ~(X) = the dense open sets, C[~(X)] is 

I am indebted to: Nathan Fine for pointing out the 
problem which Theorem (II) addresses, and for many conversa­
tions about this problem (and other matters); W. W. Comfort 
for some suggestions about some proofs in §3; Melvin Henrik­
sen for listening attentively and critically to the proof of 
Theorem (II), and for some useful suggestions; Scott Williams 
for various helpful and educational conversations about 
Theorems (I) and 3.1, documented further in the text; the 
referee, for his helpful and civilized assistance in improv­
ing the paper. 
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both the maximal ring of quotients of the ring C(X) [FGL] 

and the lateral completion of the vector lattice C(X) [VG]. 

Again, a homeomorphism §(Y) 3 S ~ T E §(X) induces an iso­

morphism C[§(Y)] ~ C[§(X)]. We prove a converse: 

(II) ·An isomorphism of the rings of quotients (lateral com­

pletions) of C(Y) and C(X) is induced by a homeomorphism of 

dense open sets, provided X and Yare separable metrizable 

(or rather more generally). 

§ 's 2 and 3 are devoted to proving (I) and § 's 4 and 5 

to (II). These are almost completely independent; in spite 

of the similarity in form between (I) and (II), the proofs 

are very different. 

(I) is equivalent to a theorem on co-absolutes obtained 

independently (of this work and each other) by C. Gates, 

D. Maharam and A. H. Stone, and to some extent S. Williams. 

See 3.2(e). 

(II) I proved and announced some time ago [HI]; it is 

the solution to a problem of Fine, Gillman, and Lambek. 

1.	 Preliminaries 

This section describes some of the features of the 

structures C[S(X)] needed in the sequel. We particularly 

draw on [FGL] and [8], though we try to be reasonably self­

contained. 

1.1 C[5]. Let X be a space (always Tychonoff), and 

let J(X) be a filter base of dense subsets of X. That is, 

if 81 ,82 E SeX), then there is 8 3 E Sex) with 8
3 
~ Sl n 8

2
• 

Let 
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C[S(X)] = u{C(S) Is E S(X)} modulo ­

where: for f E C(Sl) and g E C(S2)' f - g means f(x) = g(x) 

for each x E Sl n S2. (This is easily seen to be an equiva­

lence relation.) 

Usually, we can suppress mention of equivalence classes, 

and, e.g., write dom f for f E C[S(X)] to mean some S E S(X) 

on which some representative of f is defined. We also write 

C(X), C(S) ~ C[S(X)], with no confusion. 

S(X) is a directed set under set inclusion. For S =T, 

define P~: C(T) + C(S) as P~(f) fls (the restriction). 

This function clearly preserves pointwise operations and 

order, and so is a homomorphism between rings, vector lat­

tices, lattice-ordered algebras, etc. Because S is dense, 

P~ is 1 - 1. 

Thus, we have a direct system {C(S);p~} of rings, vector 

lattices, etc. It follows without difficulty that C[S(X)] 

is a realization of the direct limit lim {C(S) Is E S(X)} 
+ 

(in rings, vector lattices, etc.). 

Two important substructures (rings, vector lattices, 

etc.) of C[S(X)] are 

C*[S(X)] {f E C[S(X)] If is bounded} 

U{C*(S) Is E S(X)} modulo ­

1 im {C* (S) IS E 5 (X) }, and 
+ 

{f E C[S(X)] I If I ~ g for some g E C(X)}. 

1.2 Filter BaBes and CompZetions. Some of the natur­

ally occurring filter bases S(X) are, first ~(X) and ~o(X) 

mentioned in the introduction; also, [(X) = all dense cozero 

sets, and [0 (X) = all dense countable intersections of dense 
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cozero sets. Actually, §o(X) and Co (X) are not always 

filter bases; assuming X to satisfy the Baire Category 

Theorem ("X is a Baire space") ensures that they are. For 

most purposes though, the filter bases §o(SX) and Co(SX) 

will do. The "natural occurrences" of all these are listed 

below: 

1.2.1	 C[~(X)] is the maximal ring of quotients of the ring 

C(X) [FGL], and the lateral completion of 

the vector lattice C(X) [VG]. 

C*[§o(8X)]	 is the Dedekind-MacNeille completion of 

the lattice, vector lattice, or 1-algebra 

C(8X) = C* (X) [WI]' [FGL], [S], and 

= C*[~o(X)] for X Baire. 

Cx[~o(8X)] likewise for C(X). 

C[[(X)] is the classical ring of quotients of the 

ring C(X) [FGL]. 

C*[[a(SX)] is the Cantor (order-Cauchy) completion 

of the i-group, vector lattice, or 

i.-algebra C(aX)	 C* (X) [DHH], and 

= C*[[a(X)] for X Baire. 

Cx[[o(SX)]	 likewise for C(X). 

The above facts are motivational, and we don't need to 

explain them further. Also, we won't say anything in the 

sequel about [(X) or [a(X), essentially because our hypothe­

ses for (I) and (II) largely obliterate any differences 

between §a and [a' and § and [. 

1.3 Ma~imaZ IdeaZ Spaces. Again with a general J(X), 

for S ~ T we have a continuous map n~: SS ~ 8T of the 
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stone-Cech compactifications, extending the inclusion S ~T. 

TThere results an inverse system {SSins} of compact spaces, 

with a nonempty inverse limit. 

1.3.1 SS(X) = lim{SS\S E S(X)}. 

Let nS : SS(X) ~ SS be the natural projection. 

Let R be the two point compactification of the reals. 

For f E C(S), there is an extension Sf: SS ~ R, and then 

f = Sfon defines f E C(SS(X) ,R). Without going into the s 

details, this process isomorphically represents CrS(X)] as 

a lattice-ordered algebra of R'-valuedfunctions on as(X): it 

is eas~ly seen from the construction of the inverse limit 

that the functions f separate the points. Consequently 

1.3.2 SS(X) "is" (a) The space of maximal R,-ideals in the 

R,-algebra CrS(X)] (or in c*rS(X)] or 

CxrS(x)]), and 

(b) The space of vector lattice ideals 

maximal with respect to not containing 

the constant function 1, in the vector 

lattice CrS(X)] (or c*rs(X), or 

ex [5 (X) ] ) • 

Here, the ideal spaces are given the hull-kernel 

topology. The above either is in [FGL] or follows from 

considerations in §'s 2, 3,4 or [HRl ]. 1.3.2 implies that 

the representation f~f is that of Henriksen-Johnson for 

i-algebras [HJ], and that of Yosida for vector lattices. 

(See [HRl ] and [LZ].) 

1.3.3 In C[S(X)], we introduce the metric of uniform 



412 Hager 

convergence, p(f,g) = sup{ If(x) - g(x) A 11 x E dom f n dom g}. 

For f - g bounded, we shall write Ilf - g II for p(f,g). 

If (f ) ~C[5(X)] and if n dom f is dense, then n n n 
P(fn,fO) ~ 0 means that f ~ f O uniformly on ~ dom f . In n n 

case 5(X) is closed under countable intersections, standard 

methods yield that C[5(X)] is complete in p [FGL], or, as we 

shall say, "uniformly closed"; likewise for c*[5(X)]. 

Combining the representation on 85(X) with the Stone­

Weierstrass Theorem, we obtain this: If 5(x) is closed under 

'" countable intersection, then C*[5(X)] 3 f ~ f E C(85(x» is 

an isomorphism (onto). 

1.4 Homomorphisms. We consider homomorphisms between 

structures of the form C[5]. Now and in the sequel, every 

homomorphism is supposed to preserve the aonstant funation 1. 

In the following two propositions, we have topological spaces 

Y and X, and suppose given filter bases 5(Y) and J(X) of 

dense sets in Y and X, respectively. By 1.3.2(b) and 2.10 

of [HR ], we have:l 

1.4.1 If C[5(Y)] ~ C[J(X)] is a veator lattiae homomorphism, 

then there is a unique aontinuous map 85(Y) ~ 8](X) for whiah 

~(f)'" = fOT for eaGh f E C[5(Y)]. If ~ is an isomorphism, 

then T is a homeomorphism. (Here ""'" refers to 1.3.) 

1.4.2 Let C[5(Y) ~ C[J(X)] be a function with ~(1) = 1. 

Then ~ is a vector lattice homomopphism iff ~ is a ring 

homomorphism. 

Proof. (Sketch) . is 4.3 of [HR1 ] (and also follows 

from 6.7 of [HR1 ]). The first proof, using l.~.l, is just 
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the observation that the operation f ~ foT preserves existing 

multiplications. 

Let ~ be a ring homomorphism. In the structures C[Sl, 

f > g iff f - g is a square. Since ~ preserves squares, we 

have f > g ~ ~ (f) ~ ~ (g). Then , ~ ( I f I )2 ~ (f) 2, and 

~(Ifl) > 0; by taking square roots, ~(Ifl) I~ (f) I. Then 

easily ~(f v g) = ~(f) v $(g) and likewise for A, so $ is a 

lattice homomorphism. It remains to show $(rf) = r$(f) for 

r E R, and this will follow from $(r) = r: This is so for 

integers since $(1) = 1; $(~) = ~, for integers n, follows 
·n n
 

easily; hence $(r) = r for rationals r. For r E R, let
 

r + r with r rational. Then 0 ~ ~(rn r) r - $(r), and nn n 

taking the limit, 0 ~ r - $(r). Likewise 0 > r - $(r). 

Because of 1.4.2, we shall not qualify the word "homo­

morphism. " 

2. Dedekind Completion and Co-Absolutes 

This very sketchy section is preliminary to proving (I) 

of the introduction. 

2.1 The absolute (projective cover, projective resolu­

tion) of a space X is an extremally disconnected space aX 

and a perfect irreducible map aX ~ X. ("Perfect" means 

continuous, closed, with point-inverses compact; equivalently, 

the extension over Stone-Cech compactifications preserves 

remainder. "Irreducible" means continuous, onto, and mapping 

no proper closed set onto.) 

Each space has an essentially unique absolute. ([G2] 

for compact spaces; see the bibliography of [H2].) 
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Spaces with homeomorphic absolutes are said to be 

co-absolute. 

2.2 The absolute of SX is S§o (SX). This is homeo­

morphic to S§(SX), to S§(X), and for X Baire, to S§o (X). 

( [WI ], [FGL], [S] .) 

Thus, C(aSX) is the Dedekind-MacNeille completion of 

C*(X) (using 1.3.3 and the foregoing). 

2.3 A homomorphism of the aompZetion of C*(Y) to that 

of C*(X) is a homomorphism C(aSY) ~ C(aSX), and these 

aorrespond bi-uniquely (and bi-funatoriaZly) to aontinuous 

maps aSY ~ aSX, with isomorphisms aorresponding to homeo­

morphisms, as ~(f) = fOT. 

Proof. By the usual duality for C(X), X compact ([GJ], 

ch. 10); or by its generalization 1.4.1. 

2.4 Suppose Y and X are Baire, that C*[§o(Y)] ~ 

C* [§o (X)] is an isomorphism, that C[aSY] -t. C[aSX] is the iso­

morphism satisfying ~(f) = <I> (f)" (""" referring to 1.3), and 

that aBY ~ aB~ is the homeomorphism corresponding to ~ as 

in 2.3. Suppose there are S E §o(Y), T E §o(X) and a homeo­

morphism S ~ T for which the diagram commutes: 

aSY' ~ aBX 

~s 1 1 ~T 
BS ~ ST 

1fSHere aBY = S§o(Y) ~ BS is the natural projection (1.1), 

1fT likewise, and Ba is the Stone-Cech extension. 

Then a induces ~ as follows: If f E C*[§o(Y)], then 
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~ ~ 

dom f E ~o (Y), '[ (dom f) E ~o (X), and foT E C* (T (dom f» 
is a representative of <p (f). We write just "<P (f) = fo'[ for 

each f." 

To prove this, one merely chases diagrams. The point 

is that proving (I) is now explicitly reduced to 3.1 below. 

2.3 says that (for X and Y Baire) an isomorphism 

C* [,~o (Y)] -i. C* [Yo (X)] implies a homeomorphism a8Y...!.. a8X 

(inducing <p through combination of 1.4.1 and of 1.3).111'11 

The following generalization seems of interest: 

2.5 Let S(Y) and ](X) be fiZter bases of dense sets 

in Y and X, respectiveZy. Let A be a Zarge sub-vector­

Zattice of C[S(Y)] with 1 E A, and suppose that A ~ C[J(X)] 

is an embedding, with <P(A) Zarge in C[](X)]. Then there is 

a homeomorphism a8Y 1. a8X (inducing <p as above). 

Proof. (Sketch). The proof consists in the following 

diagram, which we shall briefly explain. 

TI1ajY+--~-- ajX
TI2 

85 (Y) 8] (X) 

°1 1 1°2 

Here, XA and X<p(A) are spaces of ideals referred to in 

1.3.2(b). And 01 is the dual (in the sense of 2.10 of [HRl ]) 

of the embedding AC-+ C[S(Y)], and is irreducible because A 

is large (4.1 of [HR2]; see also p. 17 of [WI]). Likewise, 

02 exists and is irreducible. h is the homeomorphism dual 

to A ~» <P(A). The absolute a8Y maps irreducibly onto any 
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space like SS(Y), hence n l ; likewise, TI 2 . This shows that 

aSY is the absolute of XA, and aSX of X~ (A). Thus T exists 

as the "lift" of h (such lifts follow from projectivity of 

aSX [GIl). The position of T in· the diagram shows T is 

irreducible, and since aSY is extremally disconnected, it 

follows that T is a homeomorphism [G2l. 

2.6 Getting ahead of ourselves, we raise the question 

of how to identify a homeomorphism aSY J. aSX which comes 

from an isomorphism C[y(Y)] ~ C[y(X)]. When we have 

Theorem (II), this asks what T looks like when there is a 

commutative diagram 

a T 

1T r+- ar1T T 
S 

SS~ ST 

for a homeomorphism y(Y) 3 S 2 T E y(X). 

3. Co-Absolute Implies Homeomorphic Dense ~s 

By the preceding section, in order to prove Theorem (I) 

of the introduction it suffices to prove 

3.1 Theorem. Let X and Y be spaces which are Cech­

complete with Go-diagonal. If aSY ~ aSX is a homomorphism 

of the absolutes, then there are dense Go's S ~ Y and T =X, 

and a homeomorphism S ~ T, such that the following diagram 

commutes: 

a Y 
1T l ~ alx 

1TTs 
8S +-f---:S:.;;...(J~ 8T 
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3.2 Remarks. (a) X is called Cech-complete if X is 

a Go in SX, equivalently, in any/every compactification. 

Such a space is Baire. Any completely metrizable space has 

this property, and any metrizable Cech-complete space admits 
v 

a complete metric. (Cech's Theorem; see [W ].) This pro­2

perty is inversely preserved under perfect maps. X has 

Go-diagonal means that the diagonal in X x X is a Go-set. 

Metrizable spaces have this property, and any space with 

GO-diagonal which is Cech-complete and paracompact is com­

pletely metrizable [C]. 

(b) In [W4 ], Remark (2), Scott Williams shows that any 

Cech-complete space with Go-diagonal contains a dense Go-set 

which is completely metrizable. This shows that 3.1 is 

essentially no stronger than the same assertion ~or completely 

metrizable spaces; my proof of 3.1, below, becomes no simpler, 

however. 

(c) Williams points out the following companion to 3.1 

and results in [W4]: for spaces X and Y which are first 

countable regular with countable n-base, a homeomorphism 

aSY ~ aSX is equivalent to homeomorphic dense subsets of X 

and Y. This follows from the fact that such a space contains 

a dense set homeomorphic to a space Q U F, Q being the 

rationals and F some subspace of the integers (itself fol­

lowing from: a countable metrizable space without isolated 

points contains a copy of Q). In this connection, see Remark 

(4) of [W ].
4 

(d) In the diagram in 3.1, the map ~S is both (1) The 

projection from 6§o(Y) onto SS, and (2) The irreducible map 
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of aSS onto SS (since aSY = aSS); likewise for TIT. Thus, of 

course, a determines T in each of two ways: (1) T = l~m{SaT': 

T' E Yo(X), T' ~ T}, where aT' aIT', and (2) from projec­

tivity of aSX: Let f = (Sa)oTI T; then there is T with 

TISoT f. 

(e) Theorem 3.1 has, from the author's perspective, the 

following history: I proved it under the (stronger) hypothe­

sis of a homeomorphism aY + aX in the Fall of 1977, and sub­

mitted [H3l for publication in Fall 1978. After this, I 

noticed that D. Maharam had proved the theorem for Y = X 

the Cantor set [MIl. Melvin Henriksen told Scott Williams 

the theorem in Biloxi, January, 1979, and Williams noted 

that 3.1 followed from his results in [W3l, and then that my 

proof yielded the full 3.1. In Athens in March, 1979, A. H. 

Stone told me that he and Maharam had proved 3.1 [MSll and 

more [MS2l; then Williams discovered that 3.1 appears in the 

1976 thesis of Catherine Gates [GIl. 

The proof of 3.1 which we now present differs substan­

tially from the other proofs. 

ppoof of 3.1. We begin by constructing the "least 

common cover" of the co-absolute spaces SY and SX. Pro­

ceeding more generally: 

3.3 Lemma. Let {X 10. E A} be a set of ao-absoZute 
a. TI 

spaaes: Fop eaah a, Zet E ~ X be the ppojeative aovep.a 

Let E ~ Z be the evaZuation map TI(e) = (TIa(e» E TT{Xala E A} 
qa

onto the pange Z = TI[El, and Zet Z ~ Xa(a E A) be the 

a-th ppojeation, pestpiated to Z. So qao TI = TI fop eaah a,a 

and: 
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(aJ	 n and each qa are perfect and irreducible, 

(bJ Z is a closed subspace of TT{xala E A},
 
fa
 

(cJ	 Let W be a space and for each a, W ~ Xa a perfect 

irreducible map. Then there is unique W ~ Z with 

(Actually, we shall need only (a) in the proof of 3.1, 

but (b) and (c) seem of interest.) 

(a) is immediate from the following, which is known and 

easily proved. 

3.4 Lemma. Suppose given maps B -L C --.9.. D. 

(aJ If gOf is irreducible (respectively, perfect), then 

f is irreducible (resp., perfect). 

(bJ	 If gOf is irreducible and f is onto (resp., gof is 

perfect and f is dense) then g is irreducible 

(resp., perfect). 

To	 prove 3.3(b): E ~ n{x Ia E A} (to the full product)a 

is also perfect, by 3.4(a), and as is well known, any perfect 

map has closed range. 

We omit the proof of 3.3(c). 

The following is crucial. 

3.5 Theorem. (Mishkin, Theorem 4 of [M2]). Suppose 

B ~C is closed and irreducible, that B has Go-diagonal and 

that C is a Baire space. Then there is a dense Go-set G in 

B with fiG a homeomorphism onto a dense Go-set in C. 

(Mishkin's result is stated a bit differently than 

this, but his proof yields the above.) 

The proof of 3.1 consists in putting the foregoing 
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together according to the commuting diagram below, which
 

we shall explain.
 

aSY aSX
 

~X 
7T 

« 
aX 

y 

_/
X 

~ .­
qy (Y) n qx (X) 

~/
C --4 Byy 

J J 
/G

t
Xs ~ Gyy 

'~ 
Gy n GX 

..-------- --------­_---~T s 
a 

Here a shall be a homeomorphism of the dense Go'S T 

and S; thus we obtain 3.1 (as explained in 3.2(b». 

To begin, 3.3 is applied to the co-absolute spaces ay 
7T 7T 0""( 

and aX, with aaX ~SX and aSX ~SY taken as the projec­

tive covers. This yields Z, 7T, and q , q • Note that y x 

z 
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z ~ BY x BX. 

We now shall construct dense Go'S By and Cy as shown, 
qy 

so that is perfect and irreducible. Then 3.5 willCy~ By 

be applied. 

Since Y is a Go in BY, qy 
-+-

(Y) is a Go in Z, and is 

dense because qy' being irreducible, inversely preserves 

-+­
density. Likewise, qx (X) is a dense Go in Z. Hence, so 

-+- -+­
is qy (Y) n qx (X) _ A. Thus, A is Cech-complete (being 

a Go in a compact space [W ]), hence a Baire space. Note
2

that A ~ Y x X. 

-+- () qy . f (bObserve that qy y ----+ Y 1.S per ect ecause 

qy(Z - qy -+- (Y» ~ BY - Y) and irreducible (because 
q 

Z ~8Y is irreducible; see [WI]' p. 17). And A is a 

dense Go in qy -+- (Y). We need the following. 

3.6 Lemma. Let D ~E be pepfeat and ippeduaib~e, 

with E a Baipe spaae. Let A be a dense Go in E, Zet 

C = E - q(D - A), and B = q -+- (C). Then C and B ape dense 

Go's, B ~ A, and B ~C is pepfeat and ippeduaibZe. 

Ppoof. A perfect map is closed. Thus, since D - A is 

an F ' so is q(D - A), so that C is a Go; therefore, B is 
o 

a Go. 

e is dense: We have D - A = U F , with each F closed 
n n n 

and nowhere dense. Because q is irreducible, each q(F ) is n 

nowhere dense. (If q(F ) ~ open 0 ~ ~, then F would contain n n 

q (0) : if not, there would be open nonvoid V ~ q -+- (0) 

with V n F =~. Then q(D - V) = q(D), contradictingn 

irreducibility.) Thus, q(D - A) = U q(F ) is meager, and nn 
the complement C is residual, hence dense (since E is Baire). 
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Irreducible maps inversely preserve density; thus, B is 

dense. 

Finally, B --5L. C is perfect, since q (D - B) ~ E - C and 

D --5L. E is perfect, and is irreducible since D --5L. E is 

irreducible (and [WI]' p. 17). 
+ +

Now, applying 3.6 to qy (Y) n qx (X) produces 
qy 

By ---+Cy perfect and irreducible, with By and Cy dense 

Go's. Note that By ~ Y x X, hence By has Go diagonal (since 

y and X do, and the property is finitely productive and 

hereditary); also, Cy is Baire. 

Mishkin's Theorem 3.5 now yields dense Go'S Gy and Sy' 
qy

with Gy ---+Sy a homeomorphism. The same procedure applied 

to qx + (Xl ~x yields dense Go'S GX and SX' with 
qx

G ----+ Sx a homeomorphism.x
 

Now, Gy and G are dense Go'S in the Baire space
x 
+ 

qy (Y) n qx 
~. 

(X) , so that Gy n GX is a dense Go • Then 

S == qy(Gy n G ) and T == qx(Gy n G ) are dense Go'S, and are x	 X

homeomorphic via a == qyo(qx 

The proof is complete. 

4.	 Direct Limit Homomorphisms 

§'s 4 and 5 are devoted to Theorem (II) of the intro­

duction. In §4, we show how a homomorphism C[5(y)] ~ C[](X)] 

which "respects the direct limits" is induced by a continuous 

function S + T (for some S E 5(y) and T E J(X». In §5, we 

show that for J = §, and under some hypotheses on X, each 

homomorphism indeed does respect the direct limits. From 

these	 Theorem (II) follows. 

First, we interject some remarks about the situation 
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surrounding Theorems (II) and (I). (1) The "algebraic" 

hypothesis of (II) is stronger than that of (I), for: an 

isomorphism C[~(Y)] Lc[~(x)] implies by 2.5 a homeomorphism 

aSY ~aSx (inducing ~ in a certain way), and then there is 

an isomorphism of the completion of C*(Y) onto the comple­

tion of C*(X), by 2.3. (2) The conclusion of (II) is 

stronger than that of (I). (3) As pointed out in [HI]: 

there is a natural isomorphism C[~(Q)] ~ C[~(SQ)] (Q = the 

rationals), but Q and SQ do not have homeomorphic dense open 

sets. Thus, some topological hypotheses are needed in (II). 

(4) The remarks of 3.l(c) help place Theorem (II) in per­

spective. 

Throughout this sectioh, S(Y) and ](X) are fixed filter 

bases of dense sets in Y and X, respectively. 

4.1 Functions Induce Homomorphisms. (a) Consider a 

continuous function Y ~dom T ~X which satisfies the 

condition 

(S + ]) if S E S(Y), then T + (S) contains some 

T E ](X). 

Then, for f E C[S(Y)], choose 5 with f E C(5), then choose 

T E ](X) with T + (8) ~ T, and define $(f) E C(](X» to be 

the equivalence class of the function fO(TIT). It is easily 

seen that this is well defined, and that there results a 

homomorphism C[S(Y)] Lc[](x)]. We call ~ the homomorphism 

induced by T, and express this by writing "~(f) = fOT for 

each f." Evidently, such ~ has ·the property 

(dl) if 8 E S(Y), then there is T E ](X) with 

~ (C (5» ~ C (T) • 
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Here, "dl" is short for "direct limit": It is easy to see 

that a homomorphism satisfying (dl) is the direct limit (in 

rings, vector lattices, etc.) of "partial" homomorphisms 
<p 

C(S) ~C(T). 

lIf <p is an isomorphism with both <p and <p- satisfying 

(dl), we call <p a bidl isomorphism. 

(b) Note that for the cases S = J = ~, or ~o' or C, or 

Co (assuming Baire spaces where appropriate, a Za 1.2), the 

condition (5 + J) will be satisfied by any continuous func­

tion Y ~T E J(X) which inversely preserves dense sets. 

(Here, of course, (S + J) reduces to "T + (S) ~ J.") Rela­

tively familiar classes of maps which do this are the 

irreducible maps, Henriksen-Jerison maps, and the skeletal 

maps (all of which occur naturally in the theory of the 

absolute) •

(c) We are aiming towards proving that certain homo­

morphisms are induced by functions in the manner of (a). 

We require the following fragment of the duality theory for 

C (X) • s: 

Each homomorphism C(Y) ~C(X) is induced by a unique 

continuous map uY ~X, as ~(f) = (Uf)oT for f E C(Y). 

Here, uY is the Hewitt realcompactification of Y, and 

uf is the extension of f in C(uY). See Chapter 10 of [GJ] 

for details. 

We are going to apply this fact to a homomorphism 

C[S(Y)] ~C[J(X)] satisfying (dl). This will produce, for 
T

Seach S E S(Y) a continuous map uS ~TS' for some Ts E J(X). 

For simplicity, we shall suppress the u's by assuming that 

S(Y) consists entirely of realcompact sets. Since our 
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primary interest is in §(Y), we recall the following from 

8 • 1 7 0 f [GJ] • 

These are equivalent: Y is hereditarily realcompact; 

each Y - {p} is realcompact; each member of §(Y) is real-

compact. 

We now have a converse of (a). 

4.2 Proposition. Let C[S(Y)] LC[](x)] satisfy 

(dl)~ suppose that S(Y) consists of realcompact sets and is 

closed under finite union. Then there is T E leX) and con­

tinuous Y ~T (which is essentially unique and satisfies 

(S + ])) such that ~(f) = fOT for each f. 

Proof. Given S, we have ~(C(S)) ~ C(TS)· So ~S = ~IC(S) 

is a homomorphismC(S) ~ C(T )' and is induced by a unique
S

TS
S ~TS. 

Given Sl and S2' we claim that TS ITS n T ITsS TS1 1 2 2 1 

n TS • Supposing not, there is p E T n T with
S S2 1 2 

TS 
(p) +TS (p). Choose f E C(Sl U S2) withf(T (p))

s +1 2 1 

f(T (p) ) , by complete regularity. Since f E C(Si) ,S2 

~S. (f) = f oT S. • l. ~S S2 
Since ~S. = ~IC(s.), we have (f) = ~ (f) 

l. l. l. I 

as members of C[J(X)], and this implies pointwise equality 

of representatives on any dense set on which the representa­

tives are defined, e.g., T n T ; this contradicts
S S1 2 

f(T
S 

(p)) +f(T S (p)). 
1 2 

Specifically now, fix any So (e.g., Y, if Y E S(Y)), 

take T = T and let T = T • Then Y ~T induces ~. 
So So 

(5 + J) holds because given S, there is TS with 
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1 

S ~ TS inducing 4>s, while 1 sl T n TS 1 ITnTS ' so that 

1 
+ 

(S):2 TS • 

4.3 Proposition. Let C[S(Y)] ~C[J(X)] be a bidl 

isomorphism, and suppose that 5(Y) and lex) are eaah aZosed 

under finite union and aonsist of reaZaompaat sets. Then 

1
4> is induaed by a homeomorphism Yl +--Xl ' where Y =Yl aon­

tains members of 5(Y) and X =Xl aontains members of J(X). 

Prior to the proof, we remark: the conditions on Y' 

and Xl above come from the conditions (S+ ]) on 1 and 

(S ~ J) on 1 + in the conclusion of 4.2, and for our 

examples (y, etc.). These reduce, per 4.l(b), to 1 + (5)= ] 

and 5 =(1 +) + (J). Further, looking at the proofs shows 

that, for the examples, Yl E 5(Y) and Xl E ](X). Explicitly, 

then, for the case of 5 = J = y, we have 

4.4 CoroZZary. If Y and X are hereditariZy reaZaom­

apat, and if C [y(Y) ] ~C[y(X)] is a bidl isomorphism, then 

there are S E Y(Y) , T E y(X), and a homeomorphism S ~T 

with 4> (f) f O l for eaah f. 

Proof of 4.3. By 4.2, 4> is induced by Y ~TO satisfy­

ing <5 + J), and ~-1 is induced by So ~x satisfying <5 + J). 

Set Xl = 1 
+ 

(SO) n To; this contains a T n TO' and 

aOl is defined on Xl. Let 11 = ll xl • 

We claim that a O l 1 is the identity function on Xl: If 

not, there is P E Xl with a(T(p) +p. Choose f E C (X) with 

{o on a neighborhood G of P, 
f 

1 on a neighborhood H of a (1 (p) ) • 

Then, f 4>(4)-l(f)) as elements of C[5(X)], which translates 
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to: f = (foo)oL pointwise on some.T E ](X). Let G 1 be a 

=
neighborhood of p with 0(L(G 1 
)) H. Then, f and foOoL are 

defined and equal on N = G n G 1 n T +~. But fiN = 0 while 

fOOOLIN = 1. Contradiction. 

OOL . 
So, Xl ~X1 is the identity, and thus o(SO) ~ Xl·
 

Set Y = 0 + (Xl) and 0 = olY • As before, Yl con­
l 1 l 

tains an Sand Lloo is defined on Yl • As before, we show
l 

LOO .
that Yl ----.. Yl J.S the identity. Thus, L1 (Xl) =Yl • 

+ + + + 
Now L1 (Y1 ) = L1 (0 (Xl)) = (oOLl) (Xl) = Xl· 

L1 01 
We	 thus have Xl ----to-Y -"X with 0loLl and Lloo bothl l l 

identities. Consequently, L and 0 are mutually inverse,
l 1 

hence homeomorphisms. 

Specifically, the L in the statement of 4.3 is the 

5.	 dl Targets for ~ 

We now complete the proof of Theorem (II). Some of 

propositions here are true for arbitrary filter bases of 

dense sets; the symbols 5(Y) and lex) as usual have this 

meaning. 

5.1 Notation. The following hypotheses on a space X 

will be needed. 

(a)	 If D ~ X and int 0 ~ ~, then there is countable 

DO c 0 with int DO +~. 

(6)	 If P f T E ~(X), then there is a sequence (Pn) ~ T

with P -+ p.n 

For example, any hereditarily separable space, or a 

space with a n-base of hereditarily separable sets, satis­

fies (a). And any Frechet space (in particular, a 
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first-countable space) satisfies (6). 

It will be clear too, that for our purposes (including 

Theorem (II» it suffices to have (6) on some TO E ~(X). 

This permits excluding obnoxious points lying in a closed 

nowhere dense set. 

It will be convenient to consider homomorphisms 

C[5 (Y)] L C [J (X)] or C* [5 (y)] L C* [J (X)] which satisfy 

(dl*) for each 5 E 5(Y), there is T E J(X) with 

<p (C* (5» ~ C* (T) • 

For now, (dl*) will be only an item in the proof of 

Theorem (II), but we intend to examine these things further 

in later work. 

The following is the main theorem of this section 

5.2 Theorem. (aJ If X satisfies (a), then any homo­

morphism c*[5(Y)] ~ C*[~(X)] is dl*. 

(bJ If X satisfies (6), then any homomorphism C[5(Y)] ~ 

C[~(X)] whiah is dl* is also dl. 

(aJ If X satisfies (a) and (8), then any homomorphism 

C[S(y)] ~ c[~(X)] is dl. 

Combining 5.2(c) with 4.4, we obtain the following 

(which implies Theorem (II»: 

5.3 Corollary. Suppose Y and X are eaah hereditarily 

realaompaat and satisfy (a) and (6). If C[§(Y)] ~C[§(X)] 

is an isomorphism, then there are S E §(Y), T E §(X), and a 

homeomorphism 5 ~T with <P(f) = fOT for eaah f. 

The rest of this section consists of the proof of 5.2. 

We first require some terminology and elementary properties 
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of homomorphisms. 

5.4 Let A ~ C[J(X)]. We say that: 

A is closed under composition if a E A and g E C(R) 

imply that goa E A. 

A is closed under bounded inversion if a E A and a > 1 

imply that l/a E A. 

A is uniformly closed if A is complete with respect 

to the uniform metric on C[5(Y)]. (See 1.3.3.) 

Notice that, if S E 5(X), then A C(S) has these 

proper.ties. 

(The definitions can be made for various more general 

i-algebraic structures, e.g., [HJ], [LZ].) 

5.5 Lemma. Let A =C*[J(X)] be a uniformly alosed 

vector lattice (or ring) aontaining the aonstants. Then A 

is closed under composition. 

Proof. Let a E A. And consider the compact set 

K = range a. (This is easily seen to be independent of 

representative for a.) Let g E C(R). By the Stone-Weier­

strass Theorem (or less) there is a sequence (Pn) of piece­

wise linear functions in C(R) with P ~ g uniformly on K. n 

Since A is a vector lattice containing constants, each 

Pno~ E A. The sequence (Pnoa) is Cauchy in A, evidently 

converging to goa. Since A is uniformly closed, goa E A. 

When A is a ring, we use polynomials (Pn) as above. 

5.6 Lemma. Let C[5(Y)] ~C[J(X)] be a homomorphism~ 
, 

and Zet C ~ C[5(Y)] be a vector Zattice containing aonstants. 

Then 
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(a) ~ (C) is a vector lattice containing constants. 

(b) If C is uniformly closed, then so is ~ (C); th~n 

~(C)* is closed under composition. 

(c) If C is closed under bounded inversion, then so 

is ~ (C) • 

Proof. (Sketch). (a) because ~ is a vector lattice 

homomorphism with ~(l) 1. 

(b) The second part follows from the first and 5.5. To 

see that ~(C) is uniformly closed: Let (~(fn» be Cauchy 

in ~(C). By extracting a subsequence, we suppose that 

\ \~(fn+l) - ~(fn)1 \ ~ 2-
n 

for each n. Then we define a 

Cauchy sequence (gn) in C with ~ (gn) = ~ (f ) by: ·gl = f l ,n 
-n -n

hn+l «fn+l - gn) A 2 ) v (-2 ) and gn+l = gn + hn +l • 

Then g ~ some g E C, whence ~(g ) ~ ~(g) E ~(C) (it being
n n 

easily seen that a homomorphism is continuous for the 

uniform metrics) • 

(c) I f ~ (f) ~ 1, then ~ (f vI) = ~ (f), so 1/ (f vI) E C, 

whence l/~ (f) = ~ (1/ (f v 1» E ~ (C) • 

In 5.6, we can take C = C* (8) for 8 E 5 (Y). Consequently, 

the following will prove 5.2(a). 

5.7 Proposition. Let X satisfy (a) and let A ~ C*[§(X)] 

be a uniformly closed vector lattice containing constants. 

Then there is T E §(X) with A ~ C*(T). 

The proof uses the oscillation function: For 

f E C[](X)], and p E X, w(f) (p) = inf{sup fTVf - inf fTllf\U 

a neighborhood of pl. This is clearly independent of 

representative for f. As usual, f is continuously definable 

at p iff w(f) (p) = O. Note that w(f) (p) = +00 can occur, but 
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for f E C* [J(X) ], w(f) (p) < +00. 

Proof of 5.7. Let D = {p E Xlw(f) (p) > 0 for some 

f E A}. If int °= ~, then T = X - 0 E y(X) and A ~ C*(T). 

Otherwise, int °t ~, and by (ex) there is countable 

DO ~ D with int DO t ~. Write DO {Pl,P2' ••• }. For each 

n, there is f E A with w(f ) (Pn) > 0, and we can arrangen n 

it that 0 < f < 1 and w(f ) (p ) = 1. n - n n 

We shall choose numbers (an) so that the partial sums 

of ~ anf form a Cauchy sequence in A, but the limit f (inn 

A, since A is uniformly closed) has w(f) (Pn) > 0 for each 

n. Since any T E y(X) contains some Pn' this means that 

f f C[y(X)], a contradiction. 

In choosing (an)' we have to be sure that, for example, 

w(f l ) (P2) doesn't cancel w (P2). For this, note: iff 2 

w(g){p) > 0 and w(f+g) (p) = 0, then for any a # 1, 

w(f+ag) # O. 

Now define (an) and oscillations (En)' as follows. 

a l = 21 
and El = w(alf l ) (p) (>0). 

And inductively, 

E a n n otherwise
23 

and En+l 

It is easy to check that (an) does what is required. 

The proof of 5.7 is complete. 

We turn to the proof of 5.2(b). 
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5.8 Lemma. Let A =C[J(X)] be a ring and veator 

Zattiae aontaining aonstants, aZosed under bounded inversion, 

with A* aZosed under aomposition. Suppose f E A, P E X, and 

that f has no reaZ aontinuous extension to p. Then, if there 

is a sequenae (Pn) =dom f with Pn ~ p, then there is 

g E A* with w(g) (p) > o. 

Proof. If lim inf f(x) +lim sup f(x), then for somex-+p x~p 

real M, a function g = (f A M) v (- M) will work. So we 

, suppose lim inf = lim sup. Take (Pn) =dom f with Pn ~ p, 

and replace f by If I A 1 if necessary. We then have 

f(Pn) ~ +00 and f > 1. By passing to a subsequence, we sup­

pose f(Pn) t +00. 

Now h - l/f E A*, and h(Pn) ~ O. Construct i E C(R), 

by linear interpolation say, with 

i(h(P2n» = Ih(P2n)' i(h(P2n+l» 

Then ioh E A*. 

Finally, let 9 = «ioh)of) A 2. Then 9 E A*, g(P2n) 

and 9 (P2n+l) = 1. So w (g) (p) > 1. 

Remark. There are other hypotheses on A which entail 

the conclusion, e.g., A is a vector lattice containing con­

stants, closed under composition. Here, we reduce to 

f(Pn) t +00 as above, then choose h E C(R) (by linear inter­

polation) so that sin(h(f(P ») = +1 for n odd and = -1 for n 

n even. Then sinoh~f = g works. There are two reasons that 

we prefer the hypotheses in 5.8. (1) They are weaker: If 

A is closed under composition, then A is a ring closed under 

bounded inversion. (2) The application of 5.8 is to A 

$(C(S». This structure is closed under composition, but 

2 



433TOPOLOGY PROCEEDINGS Volume 4 1979 

proving this seems to need the duality for vector lattices 

in [HR	 ] (as in 1.4.1), and we prefer to keep this section
l 

devoid of the maximal ideal spaces. 

The following implies 5.2(b). 

5.9 Proposition. If X satisfies 

(S(]»	 ~henever T and T' E J(X) and pET - T', 

then there is (Pn) ~ T' ~ith Pn ~ p, 

then any homomorphism C[S(Y)] ~C[J(X)] ~hich is dl* 

is also dl. 

Proof. Let S E 5(Y). Then there is T E J(X) with 

~(C*(S) ~ C*(T). If there is f E ~(C(S» - C(T), then there 

is pET such that f has no real extension to p. Take 

T' dom f. By (S(]», 5.8 applies to produce g E ~(C(S»* 

~(C(S)*) with w(g) (p) > O. This is a contradiction. 

This completes the proof of 5.2, hence of (II). 
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