TOPOLOGY PROCEEDINGS

Volume 4, 1979

Pages 541-551

http://topology.auburn.edu/tp/

PARTITIONING SPACES WHICH ARE BOTH RIGHT AND LEFT SEPARATED

by Judith Roitman

Topology Proceedings

Web: http://topology.auburn.edu/tp/

Mail: Topology Proceedings

Department of Mathematics & Statistics Auburn University, Alabama 36849, USA

 $\textbf{E-mail:} \quad topolog@auburn.edu$

ISSN: 0146-4124

COPYRIGHT © by Topology Proceedings. All rights reserved.

PARTITIONING SPACES WHICH ARE BOTH RIGHT AND LEFT SEPARATED

Judith Roitman¹

0. Introduction

A space X is right separated iff X can be well-ordered in some type δ so that all initial segments are open; we say there is a right separation of X of type δ and define

rs(X) = inf $\{\delta : \text{there is a right separation of} X \text{ of type } \delta\}.$

Similarly, X is left separated iff X can be well-ordered in some type δ so that all initial segments are closed; we say there is a left separation of X of type δ and define

ls(X) = inf $\{\delta : \text{there is a left separation of X}$ of type $\delta\}$.

We say X is doubly separated iff it is both right separated and left separated. Note that there is no requirement that rs(X) = ls(X).

A theorem of Gulik and Juhasz states that compact left-separated spaces are, in fact, doubly separated. In the same paper, searching for a criterion to tell which compact spaces are doubly separated, they define the concept of a vanishing sequence : $\{D_n:n< w\}$ is a vanishing sequence for X iff it partitions X and each D_n is closed discrete in $U(D_n)$. A compact space with a vanishing sequence is left $j \ge n$ J. A compact space with a vanishing sequence is left separated. Must a compact left-separated (hence doubly

Work on this paper partially supported by NSF Grant #MCS 78-01851 AMS-MOS: Primary: 54A25, Secondary: 04A20.

separated) space have a vanishing sequence? Must it even have a countable partition into discrete subspaces? In fact, must a regular doubly separated space have a countable partition into discrete subspaces?

- I. Nagy has shown that there is a compact left separated space which has no vanishing sequence. It is, however, a union of countably many discrete subspaces. We show that
 - (a) If ls(X) and rs(X) are small enough, where X is T_1 and doubly separated, then X is the union of countably many closed discrete subspaces.
 - (b) Under CH there are regular 0-dimensional doubly separated spaces which cannot be partitioned into countably many discrete subspaces.

A few more preliminaries:

Definition 1. The upper left topology on the ordinal product $\alpha \times \beta$ is the T_0 topology whose neighborhoods are all interval products $[0,\gamma] \times [\delta,\beta]$ where $\gamma < \alpha$ and $\delta < \beta$.

Characterization 2. X is doubly separated iff there is a refinement \mathcal{I} of the upper left topology on $rs(X) \times ls(X)$ and a 1-1 onto function $f: rs(X) \rightarrow ls(X)$ so that X is homeomorphic to the graph of f under the relative topology induced by \mathcal{I} .

 $\label{eq:proof.} \begin{array}{ll} \textit{Proof.} & \text{If } X = \{\mathbf{x}_{\gamma} : \gamma < \alpha\} \text{ is the right separation,} \\ \\ \text{and } X = \{\mathbf{x}^{\delta} : \sigma < \beta\} \text{ is the left separation, define } f(\gamma) = \delta \\ \\ \text{iff } \mathbf{x}_{\gamma} = \mathbf{x}^{\delta}. \end{array}$

Proposition 3. Suppose $\lambda^{<\lambda}=\lambda$, $A\subset\mathcal{P}(\lambda^+)$, $|A|=\lambda^+$, and each $a\in A$ has cardinality $<\lambda$. Then there is a $B\subseteq A$

with $|B| = \lambda^+$ and there is some $b \subseteq \lambda^+$ so that if a, a' $\in B$ then a \cap a' = b.

B is called a $\Delta\text{-system}\text{,}$ with b its root. Use of proposition 3 is called a $\Delta\text{-system}$ argument.

Definition 4. A family of sets is a filterbase iff every finite intersection of sets in the family is non-empty.

Definition 5. Suppose $|E| = \kappa$ and A is a family of subsets of E. If $A \in A$, denote $A^0 = A$ and $A^1 = E - A$. Then A is independent iff, for any function f with domain a subset of A of size $<\kappa$ and with range a subset of 2, $|A^{f(A)}| = \kappa$. We say that $|A^{f(A)}| = \kappa$ and $|A^{f(A)}| = \kappa$. We say that $|A^{f(A)}| = \kappa$ and $|A^{f$

1. Positive Results

Throughout this section, if a space X is doubly separated we will, by characterization 2, assume it is the graph of a 1-1 function from rs(X) onto ls(X), and that the topology on X refines the upper left topology. We assume only that X is T_0 .

Lemma 6. Let X be doubly separated with $ls(X) = rs(X) = \kappa$ a cardinal of uncountable cofinality. Then X can be partitioned into κ many clopen sets, each of cardinalty $< \kappa$.

Proof. Let $x = \langle \gamma, f(\gamma) \rangle \in X$. Define by induction: $u_{x,0} = \{ \langle \beta, f(\beta) \rangle \in X : \beta \leq \gamma \text{ and } f(\beta) \geq f(\gamma) \}.$

$$\begin{array}{l} u_{x,2n+1} = u_{x,2n} \cup \{\langle \, \delta \,, f(\delta) \,\rangle \,:\, f(\gamma) \, \leq \, f(\delta) \, \leq \, f(\beta) \\ & \text{for some} \, \langle \, \beta \,, f(\beta) \,\rangle \in u_{x,2n} \} \\ \\ u_{x,2n+2} = u_{x,2n+1} \cup \{\langle \, \delta \,, f(\delta) \,\rangle \,:\, f(\delta) \, \geq \, f(\gamma) \, \text{ and} \\ \\ \delta \, \leq \, \beta \, \text{ for some} \, \{ \, \beta \,, f(\beta) \,\rangle \, \in u_{x,2n+1} \} \end{array}$$

Let $u_x = \bigcup_{n < \omega} u_{x,n}$. Since κ is a cardinal, each $|u_{x,n}| < \kappa$. Hence by uncountable cofinality $|u_x| < \kappa$. By the even stages of the construction each u_x is open; by the odd stages if $x = \langle \gamma, f(\gamma) \rangle$ then the boundary of u_x is contained in $\{\langle \delta, f(\delta) \rangle : \delta < \gamma \text{ and } f(\delta) < f(\gamma) \}$. We partition X into a disjoint collection of u_x 's by induction:

Suppose $\{u_{x_\gamma}: \gamma < \beta\}$ is a disjoint collection with $\{f(\alpha): \langle \alpha, f(\alpha) \rangle \in \bigcup u_{\chi_\beta} \}$ an initial segment of ls(X). Let $x_\beta = \langle \alpha, f(\alpha) \rangle$ be such that $f(\alpha)$ is minimal in $\{f(\delta): \delta, f(\delta) \in X - \bigcup u_{\chi_\gamma} \}$. Then $\{u_{\chi_\gamma}: \gamma \leq \beta\}$ is still a disjoint collection satisfying the induction hypothesis, and the induction can continue until X is exhausted.

Theorem 7. Let X be doubly separated, with $rs(X) = 1s(X) = \kappa^+$. Then X can be partitioned into $\leq \kappa$ many discrete subspaces. If X is T_1 the partition may consist of closed sets.

Proof. Let $\{u_{\mathbf{x}_{\alpha}} : \alpha < \kappa^{+}\}$ be a clopen partition as in lemma 6, each $|u_{\mathbf{x}_{\alpha}}| \leq \kappa$. We write $u_{\mathbf{x}_{\alpha}} = \{Z_{\alpha,\gamma} : \gamma < |u_{\mathbf{x}_{\alpha}}|\}$ where the $Z_{\alpha,\gamma}$'s are distinct. Let $D_{\gamma} = \{Z_{\alpha,\gamma} : \alpha < \kappa^{+}\}$. Then there are at most κ many D_{γ} 's, and the D_{γ} 's partition X. Since the $u_{\mathbf{x}_{\alpha}}$'s are open, each D_{γ} is discrete. If X is T_{1} , each D_{γ} is closed.

Corollary 8. Let X be doubly separated, $rs(X) = \alpha \cdot \kappa^+$ and $1s(X) = \beta \cdot \kappa^+$ where $\alpha, \beta < \kappa^+$. Then X can be partitioned

into < k many discrete subspaces.

Proof. For $\gamma < \alpha$ let $X_{\gamma} = \{x_{\rho} : \rho \in [\gamma \cdot \kappa^+, (\gamma + 1) \cdot \kappa^+)\}$, where $\{x_{\rho} : \rho < \alpha \cdot \kappa^+\}$ is the right separation of X. For $\delta < \beta$ and $\gamma < \alpha$ let $X_{\gamma \delta} = \{x^{\xi} : \xi \in [\delta \cdot \kappa^+, (\delta + 1) \cdot \kappa^+) \text{ and } x^{\xi} \in X_{\gamma}\}$, where $\{x^{\xi} : \xi < \beta \cdot \kappa^+\}$ is the left separation of X. Then $\{X_{\gamma \delta} : \gamma < \alpha, \delta < \beta\}$ partitions X into at most κ many pieces, each with rs and 1s of κ^+ . Apply theorem 7.

2. Counterexamples

All spaces are assumed Hausdorff.

Suppose $\kappa = \lambda^+ = 2^\lambda$ and $\lambda^{<\lambda} = \lambda$. We will construct a 0-dimensional, doubly separated space X with $ls(X) = k, rs(X) = \kappa^2$, and no partition into fewer than κ discrete sets. X will be constructed, as in characterization 2, as the graph of a function from a right separated space Y onto a left-separated space Z. Both Z and Y will have fairly strong properties.

Under a weaker hypothesis, the argument can be adapted to get a counterexample which is not regular, only Hausdorff. We will sketch the adaptation.

Some preliminaires: If σ is a partial function from α into 2 we write $N_{\sigma}=\{f\in 2^{\alpha}: f\supset\sigma\}$. As an abuse of notation we write dom $N_{\sigma}=$ dom σ . The space $F(\alpha,\beta)$ for $\beta\leq\alpha$ is the set of functions 2^{α} under the topology whose basis consists of all N_{σ} , where $|\sigma|<\beta$. Note that $F(\alpha,\beta)$ is 0-dimensional.

Definition 9. (a) A space is hereditarily κ -separable if every subspace contains a dense subset of cardinality $< \kappa$.

(b) A space Y is $\kappa\text{-Luzin}$ in Y* if every nowhere dense subset of Y* intersects Y in a set of cardinality < κ .

(c) A space has property $K(\kappa)$ if every collection of at least κ many open sets contains a subcollection which is a filterbase of size κ .

Proposition 10. Suppose $\kappa=\lambda^+=2^\lambda$ and $\lambda^{<\lambda}=\lambda$. Then there is a space Y with the following properties:

- (1) $ls(Y) = \kappa$.
- (2) $Y \subseteq F(\kappa, \lambda)$.
- (3) Y is κ -Luzin in $F(\kappa,\lambda)$.
- (4) Y has property $K(\kappa)$.

A theorem of Tall says that a κ -Luzin space with no pairwise disjoint family of open sets of size κ^+ is hereditarily κ -Lindelof. Thus (3) and (4) imply that Y has no discrete subspace of cardinality κ . So if Y' \subseteq Y and $|Y'| = \kappa$ we may conclude that at most λ many elements of Y' have relative neighborhoods of cardinality $\leq \lambda$.

Proposition 11. Suppose $\kappa = \lambda^+ = 2^{\lambda}$ and $\lambda^{<\lambda} = \lambda$. Then there is a space Z with the following properties:

- (i) $rs(z) = \kappa^2$; we identify z as a set with κ^2 .
- (ii) Z is 0-dimensional.
- (iii) Z is hereditarily K-separable.
 - (iv) Define $Z_{\alpha} = \{\alpha\} \times \kappa$. Then for every basic open set $u \subseteq Z$ and if $Y \subseteq \kappa$, $|Y| = \kappa$, then $\{\alpha \in Y : Z_{\sigma} \subseteq u\}$ has size κ and $\{\alpha \in Y : Z_{\alpha} \subseteq u \text{ and } Z_{\alpha} \cap u \neq \emptyset\}$ is finite.

Proofs of propositions 10 and 11 are delayed until after the proof of the next two theorems.

Theorem 12. Suppose $\kappa = \lambda^+ = 2^\lambda$ and $\lambda^{<\lambda} = \lambda$. Then there is a 0-dimensional doubly separated space X with $ls(X) = \kappa$, $rs(X) = \kappa^2$, and if \hat{D} is a partition of X with $|\hat{D}| < \lambda$, then some $D \in \hat{D}$ is not discrete.

Proof. Let Y satisfy (1) through (4) and let Z satisfy (i) through (iv). Let $f: Z \to Y$ be 1-1 onto and let X be the graph of f, under the product topology. The only non-trivial property to check is that a small partition of X contains a non-discrete set.

For $\gamma<\kappa^2$ we denote by \mathbf{x}_γ the point $\langle \gamma,f(\gamma)\rangle\in X$. If ∂ is a partition of X, $|\partial|\leq \lambda$, then by a counting argument there are $D\in \partial$ and $A\subset \kappa$ with $|A|=\kappa$ and if $\alpha\in A$ then $D_\alpha=\{\mathbf{x}_\gamma\in D:\gamma\in Z_\alpha\} \text{ has cardinality }\kappa. \text{ Wlog we assume }D=\bigcup_{\alpha\in A}D_\alpha \text{ and show it is not discrete.}$

For $\alpha \in A$, let $Z_{\alpha}^{\star} = \{ \gamma : \mathbf{x}_{\gamma} \in D_{\alpha} \}$ and let $Y_{\alpha}^{\star} = f''(Z_{\alpha}^{\star})$. We may assume that every relative neighborhood in Y_{α}^{\star} has cardinality κ . By property (3) there is \mathbf{u}_{α} so Y_{α}^{\star} is dense in \mathbf{u}_{α} . If us is an open cover of D, it has a subcollection which can be refined to the following form:

For $\alpha < \kappa$ pick $\mathbf{x}(\alpha) \in D_{\alpha}$ so $\mathbf{x}(\alpha) \in \mathbf{Z}_{\alpha}^{\star} \times \mathbf{u}_{\alpha}$. Each $\mathbf{x}(\alpha)$ is covered by $\mathbf{w}_{\alpha} \times \mathbf{v}_{\alpha}$ where $\mathbf{v}_{\alpha} \subset \mathbf{u}_{\alpha}$, and both \mathbf{w}_{α} , \mathbf{v}_{α} are basic in their respective topologies.

We show that $\{w_{\alpha}^{}\ \times\ v_{\alpha}^{}\ :\ \alpha\in\,\mathtt{A}\}$ cannot be extended to a discrete cover of D.

By (4), there is A' \subset A, $|A'| = \kappa$, where $\{v_{\alpha} : \alpha \in A'\}$ is a filterbase in Y and hence in $F(\kappa,\lambda)$. By (iii) there is $B \subset A', |B| \leq \lambda$ where \bigcup Z* is dense in Z* = \bigcup Z*. Hence \bigcup \bigcup (iv) we conclude that if \bigcap A' and \bigcap Sup B then, for some \bigcap \bigcap B, Z* \bigcap \bigcap But by (3), Y* is dense in \bigcap and so

there is some (β ,f(β)) \in D_{γ} with β \in w_{α} and f(β) \in v_{α} \cap v_{γ} ; thus theorem 15 is proved.

Theorem 13. Suppose, for some $\kappa > \lambda$, there is a κ -Luzin subspace of 2^{λ} with cardinality κ . Then there is a Hausdorff doubly separated space X with no partition into fewer than $cf(\kappa)$ discrete subspaces; $ls(X) = \kappa$, $rs(X) = \kappa^2$.

Proof. Let Y be the κ -Luzin subspace of 2^{λ} with cardinality κ . Well order Y in type κ , Y = { y_{α} : $\gamma < \kappa$ }. Let $z \subseteq Y^2$ so that if $\langle x,y \rangle$, $\langle x',y' \rangle \in Z$ then $x \neq y$ and x = x' iff y = y'. Well order Z in type κ^2 by $\langle *$. Let $f: Z \to Y$ be 1-1 so that either $f(\langle x,y \rangle) = x$ or $f(\langle x,y \rangle) = y$. Let Z_{α} be those elements of Z which correspond to $\{\alpha\} \times \kappa$ under $\langle **; \}$ let $Y_{\alpha} = f''(Z_{\alpha})$. Let X be the graph of f under the following topology:

For $\langle x, \dot{y} \rangle \in Z$, let u,v be disjoint open sets with $x \in u$ and $y \in v$. Let

$$\begin{split} B_{\mathbf{x},\mathbf{y},\mathbf{u},\mathbf{v}} &= \left\{ \langle\langle \, \mathbf{x}^{\, \prime},\mathbf{y}^{\, \prime}\rangle\,,\mathbf{y}_{\gamma}\, \right\} \in \, \mathbb{X} \,:\, \langle \, \mathbf{x}^{\, \prime},\mathbf{y}^{\, \prime}\rangle \,\, \leq^{\star}\, \langle \, \mathbf{x},\mathbf{y}\, \rangle, \\ &\qquad \qquad \gamma \, \geq \, \delta \, \text{ where } \, \mathbf{f}\, (\mathbf{x},\mathbf{y}) \, = \, \mathbf{y}_{\delta}\,, \, \, \text{and} \\ &\qquad \qquad \mathbf{y}_{\mathbf{y}} \, \in \, \mathbf{u} \, \cup \, \mathbf{v} \, \}\,. \end{split}$$

Let the topology on X be generated by all $B_{x,y,u,v}$.

By the choice of Z this topology is Hausdorff. Again, the only non-trivial thing to check is that if \hat{D} is a partition and $|\hat{D}| < cf(\kappa)$, then some $D \in \hat{D}$ is not discrete. Again we have A, D_{α} as in the previous theorem; again assume $D = \bigcup_{\alpha \in A} D_{\alpha}$. Again, invoke Tall's theorem. Given an open $cover\ U$ of D, by another counting argument there are fixed u, v and $A' \subseteq A, |A'| = \kappa$ so that for each $\alpha \in A'$ there is some $B \in U$ and

$$(x,y),f((x,y)) \in D_{\alpha} \cap B_{x,y,u,v} \cap B_{x,y,u,v} \subset B.$$

But then U is not a discrete open cover of D.

Note that the X of theorem 13 is easily seen to be not regular.

We now turn to the proofs that the Y and Z of theorem $12 \ \mathrm{exist.}$

Note that any collection of discrete open sets in $F(\kappa,\lambda) \text{ has cardinality} \leq \lambda. \text{ Thus if U is a collection of open sets and } \cup U \text{ is dense open there is a } U' \subset U, |U'| \leq \lambda,$ and $\cup U'$ is dense open. Thus to show Y is κ -Luzin in $F(\kappa,\lambda) \text{ it suffices to check that if } |U| \leq \lambda, \text{ and } \cup U \text{ is dense open and each } u \in U \text{ is open, then } |Y = U |U| < \kappa.$

Let $\{N_{\sigma_{\alpha}}: \alpha < \kappa\}$ list all basic open sets of $F(\kappa,\lambda)$ where dom $\sigma_{\alpha} \subset \alpha$. Let $\{U_{\alpha} \mid \alpha < \kappa\}$ list all collections U of basic open sets where $|U| \leq \lambda$ and |U| is dense open. We say such a U is good for β if $N_{\sigma} \in U$ implies dom $\sigma \subset \beta$. We construct $Y = \{y_{\alpha} : \alpha < \kappa\}$ by induction so that

- (1*) $y_{\alpha}^{\ \ \ } \kappa \alpha$ is identically 0.
- (2*) $y_{\alpha} \in N_{\sigma_{\alpha}}$.
- $(3^*) \ \ \text{If} \ \beta < \alpha \ \ \text{and} \ \ U_\beta \ \ \text{is good for} \ \alpha, then} \ \ y_\alpha \in \ U_\beta.$ Note that if we have a neighborhood N_σ so $N_\sigma \subseteq N_\sigma$ on $N_\sigma \subseteq N_\sigma$ for $\beta < \alpha$, then σ has an extension σ^* so $N_{\sigma^*} \subseteq U_\beta$. By this fact the induction is completely straightforward, with the details left to the reader.
- (1) is implied by (1*); (2) is trivial; (3*) implies (3); and since by a Δ -system argument $F(\kappa,\lambda)$ has property $K(\kappa)$, (2*) implies (4). Proposition 10 is proved.

Proof of Proposition 11. Some notation: If $\mathbf{x} \in F(\lambda, \lambda)$ we say $\{\mathbf{x}_{\alpha} : \alpha < \gamma\}$ converges to \mathbf{x} iff \mathbf{x} is in its closure and $\alpha < \beta$ implies that, for some γ , $\mathbf{x}_{\beta}{}^{\dagger}\gamma = \mathbf{x}^{\dagger}\gamma = \mathbf{x}_{\alpha}{}^{\dagger}\gamma$.

Suppose $\kappa=\lambda^+=2^\lambda$ and $\lambda^{<\lambda}=\lambda$. We construct a space Z as in proposition 11. The proof combines close imitations of other known constructions, so it is only sketched.

The first space imitated is the Kunen line on ω_1 [JKR] to get a space Z* which is 0-dimensional right separated hereditarily κ -separable, $\operatorname{rs}(Z^*) = \kappa$, and each point $x \in Z^*$ has a neighborhood basis $\{\{x\} \cup \bigcup_{\alpha} u_{\alpha}^X : \beta < \lambda\}$ where $\{u_{\alpha}^X : \alpha < \gamma\}$ is a disjoint family of sets clopen in $F(\lambda,\lambda)$ and there is $x_{\alpha} \in u_{\alpha}^X$ so $\{x_{\alpha} : \alpha < \lambda\}$ converges to x in $F(\lambda,\lambda)$. The proof is an exact imitation of the Juhasz-Kunen-Rudin construction, with κ playing the role of ω_1 , λ the role of ω , and $F(\lambda,\lambda)$ the role of 2^ω .

Now switch to imitating the construction of [R]. Identify Z* with κ , preserving right separation, and construct $\mathcal{A} = \bigcup_{\lambda \leq \alpha < \kappa} \mathcal{A}_{\alpha}$ where each \mathcal{A}_{α} is an independent family on λ of cardinality κ so that if $\mathbf{B} \subseteq \alpha$, $|\mathbf{B}| = \lambda$, $\alpha \in$ closure B and A is a Boolean combination from \mathcal{A}_{α} , then $|\mathbf{B} \cap \mathbf{A}| = \lambda$. \mathcal{A} is constructed by a straightforward induction: at stage γ the first γ elements of each \mathcal{A}_{α} , $\alpha \leq \gamma$, have been constructed.

Let β be a collection of clopen subsets of Z* so that $\beta\{Z^*-u:u\in\beta\}$ is a basis for Z* and if $u\in\beta$ then $Z^*-u\notin B$. Index each A_α by $A_\alpha=\{A_u^\sigma:u\in\beta\}$. Denote $\alpha-A_u^\alpha$ as $A_{Z^*-u}^\alpha$.

Now let Z be the following space: Z as a set is κ^2 . Denote $Z_{\alpha} = \{\alpha\} \times \kappa$, for $\alpha < \kappa$. If $x = (\alpha, \beta)$ then a subbasic set containing x is

$$\{ \!\! \left\langle \alpha,\beta' \right\rangle : \beta' \in u \} \ \cup \ \{ z_{\gamma} : \gamma \in u_{\rho}^{\alpha} \ \text{for some } \\ \rho \in A_{u}^{\alpha} - \xi \}$$

where either $u \in \beta$ or $Z^* - u \in \beta$, $\beta \in u$, $\xi < \alpha$. Z is clearly right separated in order type κ^2 . The proofs that Z is Hausdorff and that (i) through (iv) hold are close imitations of proofs of similar statements in [R]. Thus proposition 11 is proved.

Bibliography

- [VDTW] E. van Douwen, F. Tall and W. Weiss, CH entails the existence of non-metrizable hereditarily Lindelof spaces with point-countable bases, Proc. of AMS, 64 (1977).
- [GH] J. Gerlits and I. Juhasz, On left-separated compact spaces (preprint).
- [HJ] A. Hajnal and I. Juhasz, On hereditarily α -Lindelof and α -separable spaces II, Fund. Math. 91 (1973-4).
- [JKR] I. Juhasz, K. Kunen and M. E. Rudin, Two more hereditarily separable non-Lindelof spaces (preprint).
- [R] J. Roitman, The spread of regular spaces, Gen. Top. and Its Applications 8 (1978).
- [T] F. Tall, The density topology, Pac. J. of Math. 62 (1976).

University of Kansas Lawrence, Kansas 66044