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EXTENSIONS OF CONTINUOUS 

INCREASING FUNCTIONS 

Worthen N. Hunsaker 

1. Introduction 

There is an extensive mathematical literature devoted 

to the problem of extending a continuous function to a 

larger space. In this note we consider the problem of 

extending continuous, increasing functions. We consider 

functions between two ordered topological spaces in the 

sense of Nachbin [4]. Nachbin [4] proves a theorem con

cerning extensions of continuous, increasing functions 

which is analogous to the Tietze extension theorem. He 

also constructs a compactification of an ordered topologi

cal space which is analogous to the Stone-Cech compactifi

cation of a topological space and characterizes this com

pactification by an extension property involving continuous, 

increasing functions. Our main result is a generalization 

of a theorem due to Taimanov [7]. We apply this result to 

ordered topological spaces which are determined by quasi

proximities. We show that the qp-continuous functions are 

the only continuous, increasing functions from such a 

space into a compact ordered topological space that have 

a continuous, increasing extension to the associated order 

compactification [1], [3]. This is a generalization of a 

theorem of Smirnov [6, Theorem 12]. The author is indebted 

to W. F. Lindgren for suggestions leading to an improvement 
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of an earlier version of this article. For further 

information on ordered topological spaces and quasi

proximities, the reader is referred to [2] and [4]. 

2. The Main Result 

An ordered topological space is a triple (X,],~) 

where (X,]) is a topological space, ~ is a partial order 

on X, and {(x,y): x ~ y} is closed in X x X. A subset S 

of X is said to be increasing if xES whenever x > a for 

some a E S. S is decrea~ing if X - S is increasing. Let 

A c: X. Cl.A niH: H is closed, increasing, A c H}, CldA 
1. 

is defined analogously. Cli and Cl both define Kuratouskid 

closure operators on X. 

Theorem (2.1). Let (X,],~) be an ordered topological 

space~ and let D be a dense subset of X. Let Y be a com

pact ordered topological space, and let f: D ~ Y be con

tinuous and increasing. Then f has a continuous, increasing 

-1 -1
extension F: X ~ Y if and only if Clif (A) n Cldf (B) = ~ 

whenever CliA n CldB = ~~ where the former aZosures are 

taken in X. 

Proof. Let F: X ~ Y be a continuous, increasing 

extension of f. Suppose that A and B are subsets of Y and 

Cl.A n CldB = ~. From 
1. 

Cl.F-l(A) c: F
-1 

(CliA), and 
1. 

CldF-l(B) c: F
-1 

(CldB), 

it follows that Cl.f-l(A) n Cldf-l(B) ~. 
1. 
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Conversely, let x E X and let N be the collection of x 

all neighborhoods of x. Let J(x) = {Cl.f(D n W): WEN}
1 X 

U {C:ldf(D n W): W E N }. Since Y is compact, nJ(x) "F ~. x

We now show that nJ(x) is a singleton. Suppose Yl'Y2 E 

nJ(x), Yl "F Y2. Without loss of generality we may assume 

that Cld{y } n Cl i {Y2} ~. Since Y is a normally orderedl 

space, there exists an open decreasing set G and an open
l 

increasing set G such that Cld{Yl} C GI , Cl {y } C G2 ,2 d 2
-1 -1

and CldGl n Cl i G2 =~. Clearly, Cldf (G n Clif (G ) ~.l ) 2

Put 

Then x E Uk ' k 1 or 2, say k = 1. Clearly G nO O lo 
f(D - Cldf-l(G )) ~. Since G is open, decreasing, wel l 

have G n Cli(f(D - Cldf-l(G ))) =~. ThereforeI l 
-1 -1

Yl t Clif(D - Cldf (Gl )) and since Clif(D - Cldf (Gl )) 

Clif(D nUl) we have Yl i nJ(x), a contradiction. Define 

F(x) = nJ(x). Clearly F is an extension of f. We shall 

now demonstrate that F is continuous. Let V be a neighbor

hood of F(x) in Y. Since each set of the form Clif(D n W) 

and Cldf(D n W) is compact, there exists a set U E N such x 
that 

Clif(D n U) n Cldf(D n U) C V. 

If Y E U, then 

F(y) E Clif(D n U) n Cldf(D n U) c v. 
Hence F(U) C V. It remains to show that F is increasing. 

Suppose F(x) < F(y) is false. Put A = {F(x)} and B = {F(y)} 



108 Hunsaker 

Then CliA n CldB =~. Since Y is a normally ordered space 

[4] there exist an open increasing set G and an open de

creasing set H such that CliA c G, CldB cHand CliG n 
-1

CldH =~. By hypothesis, Clif (G) n Cldf-l(H) = ~. 
-1

Suppose x ~ Clif (G)i then W X - Cl.f-l(G) E Nand 
1 x 

f(D n W) n G ~ 0 so that F(x) E Cldf(D n W) c X - G, a 

contradiction. Similarly y E Cldf-l(H) so x < y is false. 

This completes the proof. 

3. Order CompactificatioDS 

A quasi-proximity is a binary relation on P(X) 

satisfying most of the axioms used to define a proximity. 

The only difference is that a quasi-proximity is not assumed 

to be symmetric. For further information on quasi

proximities, the reader is referred to [1], [2], and [5]. 

A quasi-proximity 0 determines an ordered topological 

space (X,],~) if the proximity 0 V 0-1 
is compatible with 

(X,]) and {x}o{y} if and only if x ~ y. In [1] the authors 

prove that a compact ordered topological space is deter

mined by a unique quasi-proximity. This quasi-proximity 

is defined by: AooB if and only if CliA n CldB ~~. For 

the remaining part of this paper, 0 will always denote 
0 

this quasi-proximity. An ordered topological space (X,j,~) 

is an order compactification of (X']'2)' if (X,]) is a 

dense subspace of the compact space (X,]), and the restric

tion of ~ to X x X is <. 

Theorem (3.1) [1, Theorem 5.16]. Let X be an ordered 

topoZogicaZ space. 
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(i) X has an order compactification if and only if 

it is determined by a quasi-proximity. 

(ii) If 0 determines X, then there is an order com

pactification Xof X such that 0 is the restriction to 

X x X of the quasi-proximity 0 on X. 
0 

(iii) Two order compactifications of X are equivalent 

if and only if they have the same associated quasi-proximity. 

Proposition (3.2). Let (X,],~) be determined by the 

quasi-proximity 0 and let f: X ~ Y, where Y is a compact
0 

ordered topological space. Then f is continuous and 

increasing if and only if f is qp-continuous. 

Theorem (3.3). Let X be an ordered topological space 

determined by a quasi-proximity o. Let X be the order 

compactification corresponding to 0, and let Y be any com

pact ordered topological space. Then a continuous, 

increasing function f: X ~ Y has a continuous, increasing 

extension F: X ~ Y if and only if f is qp-continuous. 

Proof. Suppose A, B are subsets of Y such that 

CliA n CldB = ~, then Aoo-B and since f is qp-continuous 

we have f-1(A)0-f-l(B). Since (X,o) is a subspace of 

- -1 - -1 -1(X,oo)' we have f (A) 0 f (B) and consequently Clif (A)
0 

n Cldf-l(B) = ~, where the closures are taken in X. The 

result now follows from Theorem 2.1. 
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