TOPOLOGY PROCEEDINGS

Volume 5, 1980

Pages 185-186

http://topology.auburn.edu/tp/

ON AN EXAMPLE OF SUNDARESAN

by Brian M. Scott

Topology Proceedings

Web: http://topology.auburn.edu/tp/

Mail: Topology Proceedings

Department of Mathematics & Statistics Auburn University, Alabama 36849, USA

 $\textbf{E-mail:} \quad topolog@auburn.edu$

ISSN: 0146-4124

COPYRIGHT © by Topology Proceedings. All rights reserved.

ON AN EXAMPLE OF SUNDARESAN

Brian M. Scott

In [Su] Sundaresan constructed a compact T_2 -space X such that if Y and Z are the results of adding one and two isolated points, respectively, to X, then $X = Z \neq Y$. ('=' denotes homeomorphism.) Thus, since each of X and Y embeds in the other, there is no Schroeder-Bernstein theorem for compact T_2 -spaces and embeddings. Also, X + X = X + Z = Y + Y, where '+' denotes discrete union, and it follows from the well-known Banach-Stone theorem [Da] that C(X + X,R) and C(Y + Y,R) are isometric (denoted by '='). This was the focus of interest in [Su]; for if R_{∞}^2 is R^2 with the sup norm, then $C(X,R_{\infty}^2) \equiv C(X + X,R) \equiv C(Y + Y,R) \equiv C(Y,R_{\infty}^2)$, showing that the Banach-Stone theorem cannot be extended to arbitrary real Banach spaces.

At any rate, X has a number of interesting features, all but one of which (given X) are easy to verify. More difficult is that $X \not\cong Y$; nevertheless, the proof in [Su] is unnecessarily long and indirect, as I now show.

X is obtained by pasting together the remainders of two copies of $\beta\omega$. More precisely, let $X=\omega^*\cup(\omega\times 2)$, where $\omega^*=\beta\omega\setminus\omega$, and let $\pi\colon X\to\beta\omega$ be the obvious projection; the topology on X is the coarsest making π continuous and each point of $N=\omega\times 2$ isolated. Let $N_1=\omega\times \{i\}$, $i\in 2$. Intuitively, $X\not\cong Y$ because the extra point in Y must be added to one of the N_1 's, and this 'skews' the

186 Scott

pasting-together: the two copies of ω^* no longer line up right. (In Z, of course, we can think of one new point as extending N₀, the other N₁, so that the two copies of ω^* , being similarly 'shifted,' still line up.)

To express this idea rigorously, let $P_n = \{n\} \times 2$ for $n \in \omega$, and let $\mathcal{P} = \{P_n \colon n \in \omega\}$. A function $f \colon X \to X$ preserves pairs iff $f[P] \in \mathcal{P}$ for all but finitely many $P \in \mathcal{P}$, and the idea is that any embedding $h \colon X \to X$ must preserve pairs. Otherwise, since h is 1-1, an easy recursion suffices to produce an infinite $M \subseteq \omega$ such that $\pi^{\circ}h$ is 1-1 on $\cup \{P_n \colon n \in M\}$. Let $H_i = M \times \{i\}$ for $i \in 2$. Then $(cl_X H_i) \setminus N = (cl_{\beta \omega} M) \setminus \omega \neq \emptyset$ for $i \in 2$, so $(cl_X h[H_0]) \setminus N = (cl_X h[H_1]) \setminus N \neq \emptyset$. But $(cl_X h[H_i]) \setminus N = (cl_{\beta \omega} \pi[h[H_i]]) \setminus \omega$ for $i \in 2$, $\pi[h[H_0]] \cap \pi[h[H_1]] = \emptyset$, and disjoint subsets of ω have disjoint closures in $\beta \omega$, so the sets $cl_X h[H_i]$ ($i \in 2$) must be disjoint; this is the desired contradiction.

If, now, h: $Y \leftrightarrow X$ is a homeomorphism, then h\X preserves pairs. Let $A = \cup \{P_n \in \mathcal{P} \colon h[P_n] \in \mathcal{P}\} \cup \omega^*$. Then clearly $|X \setminus h[A]|$ is finite and even, $|Y \setminus A|$ is finite and odd, and $h \mid (Y \setminus A)$ is a bijection between these two sets, which is absurd. Hence $X \not\cong Y$.

References

- [Da] M. M. Day, Normed linear spaces, Springer-Verlag, Berlin, 1962.
- [Su] K. Sundaresan, Banach spaces with Banach-Stone property, Studies in Topology (N. M. Stavrakas and K. R. Allen, eds.), Academic Press, New York, 1975, pp. 573-580.

The Cleveland State University Cleveland, Ohio 44115