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BALANCING ACTS 

Mark D. Meyerson 

1.	 Introduction 

There is a class of problems involving the juxtaposi­

tion of geometry and topology which may be viewed as balanc­

ing tables on hills or ridges. Intuitively, we shall think 

of a table as a horizontal polygon (or horizontal line seg­

ment) with vertical legs at each corner (or endpoint). The 

legs can be arbitrarily long but of equal length. A hill 

is the graph of a continuous function whose values are taken 

along a vertical axis. A ridge is a horizontal simple 

closed curve. These problems are elementary in statement 

and the known results are often non-trivial or striking. 

We proceed in reverse chronological order--starting with 

the most recent developments and then looking at possible 

roots in earlier work. Previously unpublished findings will 

be stated as numbered results. 

2.	 Table Theorems 

In 1970, Roger Fenn pUblished the Table Theorem ([Fe]): 

Let a "hill" be given~ i.8.~ a continuous non-negative 

function f: R2 ~ R which is zero outside a compact convex 

disk~ D. Also suppose the side length d > 0 of a square 

table is given. Then the table can be placed "on" the hill~ 

i.e.~ there is a square in R2 of side d with center in D 

such that f takes a single value on the vertices. 
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Figure 1.	 The feet of the square table (with arbitrarily 
long legs of equal length) can always be placed 
on the ground so that the table top is horizontal 
and the center is over the compact convex support 
of the hill. 

Here is an intuitive justification for the Table 

Theorem (for a proof see [Fe]). The set of possible posi­

tions for a square with center in D can be viewed as a solid 

torus D x 81 where the center is at d E D and the rotation 

is determined by s E sl. For each such (d,s) the vertices 

of the square are at points a l , a 2 , a 3 , and a 4 ; and we let 

Qi = (ai,f(a i )) for each i. Now Ql' Q2' and Q3 determine 

a plane in R3 and we let ¢(d,s) be the (signed) height of 

Q above the plane.4 

Then A = {(d,s) I¢(d,s) = O} gives us those squares for 

which the table is balanced, but not necessarily horizontally 

(i.e., the Qi's are coplanar). Note that A "looks like" 

four spanning surfaces in D x sl_-any quarter-loop in D x Sl 

meets A. For ¢ has opposite signs at the ends of a quarter-

loop, where these ends are a quarter turn from each other. 
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Now let W(d,s) be the projection into R2 of the unit 

normal to the plane determined by Ql' Q2' and Q3. Then 

B = {(d,s)I~(d,s) = O} gives us those squares for which the 

first three feet can be placed horizontally. Note that B 

"looks like" a non-trivial loop in D2 x sl_-any spanning 

disk meets it. For as we let d move about aD, s E Sl fixed, 

W(d,s) points out of D. We get a non-trivial map 

W : aD ~ E2 
- {O}. So for any spanning disk of D x sl 

s 

with boundary equal to aD x s, W must somewhere be zero. 

Thus we expect "apparent spanning disk" A and "apparent 

loop" B to meet. 

Although the truth of some such Theorem seems natural, 

the precise statement requires perhaps as much cleverness 

as the proof. Note the following non-trivial restrictions 

in the Theorem: 

1. The center of the table is over D. 

2. The support of the hill, D, is convex. 

3. The table top is square. 

4. The hill is non-negative. 

Quite recently, variations in the Table. Theorem changing 

each of these restrictions have been considered. 

Last year E. H. Kronheimer and P. B. Kronheimer ([KK]) 

removed consideration of the center of the table by conclud­

ing that all four vertices of the square can be placed in 

D if aD does not contain the vertices of any smaller square. 

To see this requires the use of Fenn's Theorem. If D 

contains the origin and is "nice" we may choose A > I large 

enough so that if the square's center is in AD then so is 
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Figure 2.	 Under the appropriate conditions, the table will 
only balance with all four vertices over D. 

at least one vertex. Construct a hill as indicated in 

Figure 2, using similar copies reaD) of aD for level curves 

at height (A-r)/(A-I), I < r < A, and inside D use function 

I + f + (l/n)K where K defines a cone. Then if aD does not 

contain the vertices of a smaller square the only possible 

balancing is with all vertices in D. Take the limit as n 

increases. If D was not "nice" to start with, it is a 

limit of "nice" disks. 

Also, recently, the present author showed the neces­

sity of the convexity assumption on D ([Mel]). 

Suppose d > 0 is given. Construct aD as follows (see 

Figure 3). Take a large circle in the plane with center at 

the origin. Add the two segments from (-E,O) to the circle 

which make angles of ±E with the positive x-axis (E > 0 and 

small). Throw out the small arc of the circle these seg­

ments cut off and round off the two corners there. Note 

that the only squares with vertices on aD have center (O,O). 

Define f by taking the cone on aD with apex over (-Y,O), 

slightly to the left of (-E,G). The level curves are 
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D
 
Figure 3.	 The cone on this curve with apex over (-y,O) 

gives a hill on which we cannot balance the 
square table. 

similar to aD. Now if the original circle is large, the 

table won't balance at zero height. There is only one non­

zero height at which it could balance, but for y close to 

s, the center will not be over D. Note that this example 

also shows the necessity of a convexity assumption in 

Kronheimer and Kronheimer's result. 

As a final type of generalization to Fenn's Table 

Theorem, we consider non-square tables. Results in this 

area have had further implications related to non-negative 

hills and the concept of center of the table. 

If our table has more than four vertices, a hill which 

is a cone on an appropriate ellipse shows it may fail to 

balance. For this we just need the fact that five points 

determine a conic. We then use an ellipse such that no 
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ellipse of that eccentricity passes through the vertices 

(see [Me3]). To get a single hill on which no regular 

n-gon, n ~ 5, will balance, Fenn ([Fe]) refers to Eggleston 

([Eg]). Similarly, with four vertices, a cone on a circle 

shows we need only consider cyclic quadrilaterals. The 

question of whether a table in the shape of a cyclic quadri­

lateral can balance on any hill remains open. 

With triangular tables there are several results due 

to Zaks ([Za]), Kronheimer and Kronheimer ([KK]), and the 

author ([Me3]). For example, given any triangular table 

with any point chosen as a "center," the table can be trans­

lated (no rotation) until it balances on a hill ([Me3]). 

In a rare result for hills with possibly negative heights, 

Kronheimer and Kronheimer have shown ([KK]) that an equi­

lateral triangular table will balance with all feet on such 

a hill if and only if aD contains the vertices of an equal 

or larger equilateral triangle. 

Kronheimer and Kronheimer used Fenn's result requiring 

the center of the square table to be over the hill to get a 

result where all of the table was over the hill. We can 

reverse this process to convert Kronheimer and Kronheimer's 

result for equilateral triangles on hills with perhaps 

negative height, to get the corresponding result for tables 

with a "center" point over the hill. To do this we need: 

Lemmal. Fix any point called the "center" of an equi­

lateral triangle of side s. If a closed convex disk, D, 

doesn't contain the vertices of the triangle under any 

translation, then some transLation of the triangle has 
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"center" in the disk and all three vertices on or outside 

the disk. 

Proof. We may assume the "center" is in the interior 

of the triangle. Let S be a segment from the apex of the 

triangle, through the "center," ending at E in the base of 

the triangle. Place the base tangent to aD at E, with the 

"center" and D on the same side of the base. Then if the 

"center" is not in D, move it (and the triangle) toward the 

point of tangency until we have the desired result. If the 

"center" is in D, translate the triangle continuously so 

that the base meets D in a chord broken into the same ratio 

by E as the base is. Translate until the apex of the 

triangle touches aD and we are done. 

Theorem 1. We can balance an equilateral triangular 

table on a hill~ perhaps with negative heights~ with arbi­

trary prechosen "center" over convex compact support disk~ 

D. 

Proof. We may assume the "center" is in the interior 

of the triangle. If we can't balance the equilateral tri­

angular table with all three vertices over D, then by Kron­

heimer and Kronheimer aD does not contain the vertices of 

an equal or larger equilateral triangle. It then follows 

that D does not contain the vertices of a congruent triangle 

(see [Me2] for a proof which doesn't use the convexity of 

D). So by Lemmal, we can balance the table at zero height. 

The next stage would be tables with just two legs, 

which is what we'll consider in the next Section. 
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3. A Hill in Flatland 

Since a table with only two legs and a line segment 

for a top is of one dimension less than our earlier tables, 

we are naturally lead to consider hills which are the 

graphs of one variable. 

L 

o 

Figure 4.	 The Table Theorem in Flatland. The table will 
balance on any hill if and only if L = lin. 

Let's consider the hill to be the graph of a function 

f: [0,1] ~ h with f(O) = f(l). Then the Theorem proved by 

Paul Levy ([Le]) in 1934 was that a given segment can be 

placed horizontally with both endpoints on any such graph if 

and only if its length is lin for some positive integer n. 

For example, in Figure 4 we can see that lengths 1 and 1/2 

balance but nothing in between. Similar examples show that 

a length not equal to lin may fail to balance. To see that 

lin will always balance, Heinz Hopf gave the following 

proof ([Ho]). 

Note that a table of length L will balance if and 

only if the graph G shifted by L (G ) meets G. Add to GL

an upward vertical ray from a maximal point and a downward 

vertical ray from a minimal point to get G'. Let M be the 
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set of lengths which don1t balance on G. Then if a, b E M 

so is a + b since G~a and Gb are separated by GI--thus G~a 

and (G~a)a+b don1t meet. Since 1 ~ M, lin or (n-l)/n ~ M. 

So lin or (n-2)/n ~ M,---, etc. Hence lin ~ M. 

The restriction on the length of the table to lin is 

in stark contrast to the case with a 2-dimensional table. 

One reason is the fact that we are insisting on both legs 

inside the interval, as Kronheimer and Kronheimer do in 

2-dimensions. If instead we only require the "center" in 

the interval (by analogy to Fenn) any length table will 

balance. 

Theorem 2. If f: R -+R is continuous and zero off 

(O,L) and £ E R is arbitrary~ then there is a translation~ 

T~ of R~ such that T (£) E [O,L] and f (T (0)) f (T (1)). 

Proof. We think of [0,1] as a table. We may assume 

the "center," £, is in the interior of the table (otherwise 

place the "center" at 0 or L) and that 1 < L (otherwise 

place the endpoints appropriately on opposite sides of 

(0 ,L) ) • 

1 

x:. L 

Figure 5. Balancing a table with center over [O,L]. 
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The "center" is £ units from the left endpoint and 

r = 1 - £ from the right endpoint. Now we wish to show 

that for some x E [O,L], f(x - £) = f(x + r). 

Suppose false. Then by continuity we may assume 

f(x - £) < f(x + r) for all x E [O,L] (the> case is simi­

lar). Since f(x - £) = 0 for x < £, f(x + r) > 0 for 

x E [0,£]. But then f(x + 1 - £) f(x + r) > 0 for 

x E [0,£] and f(x + 1 + r) > O. By induction f(x + n + r) 

> 0 if x E [0,£] and x + n + r < L. In particular, in any 

unit length subinterval of [O,L] the set of points with 

f(x) > 0 has measure greater than £. Similarly, using 

f(x - £) < f(x + r) = 0 for x E [L - r, L], we have that 

in any unit subinterval as above, the set of points with 

f(x) < 0 has measure greater than r. But r + £ = 1, and 

we have a contradiction. 

A variation of this problem is to change the domain of 

the function from [O,L] (or Rl ) to the unit circle in R2 . 

Then to balance a table, it must have length at most 2 and 

this condition suffices. For if we rotate a chord equal to 

the length of the table around the circle, at some time one 

endpoint is at a minimum point and at some time at a maxi­

mum point. So at some time f takes the same value at both 

endpoints. 

A less immediate fact which seems related to the open 

question from the previous section about cyclic quadri­

laterals is the following. 

Theorem 3. Let f be a continuous real-valued function 

on the unit circle~ C~ with graph in R3
• Let Al~ A2~ A3~ 
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and A4 be any points of C. Then there are (at least two)
 

4

rotations r of C so that {rAi , f(rAi)}i=l is a coplanar 

set in R3
. 

Proof. We may assume that the Ai's are distinct and
 

cyclically ordered, with D = A A n A A Let a = A D/A A

4

.	 
3

,l 3 2	 l l 

o < a	 < 1. For 0 < e < 2n, let r be the rotation of R2 
e 

about the origin through an angle of e. Let h(e) = af(r A )
e 3

+ (l-a)f(reA ). Note that there is a point of the segmentl
 

between (reAi , f(reAi )), i = 1 or 3, directly over reD at
 

a height of h(e). The average value of h with respect to
 

e, (hav)e' is (l/2n) J h(e)de = (fav)e. Similarly, if 

g(e)	 is the height above reD of the segment between 

(reAi , f(reAi )) i = 2 or 4, then (gav)e = (fav)e. So for 

(at least 2) values of e, h(e) = g(e), and 50 for these e 

the diagonals of (reA f(reA )) i = 1,2,3,4 meet ati , i
 

(reD, h(e)), and so the four points are coplanar.
 

4.	 Planar Closed Curves 

The preceding result is similar to the final situa­

tion	 we will consider. Instead of placing a table on a 

closed curve in space which lies over a circle, we will 

consider closed planar curves. This brings us to the 

oldest results. 

In 1913 Emch ([Em]) showed that any oval (a "smooth" 

convex curve) contains the vertices of a square. (The 

problem appears to have originated with Toeplitz ([To]) in 

1911. ) 
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Top View 

Figure 6.	 Given ovalO there is some horizontal square 
table with all four feet on O. 

Emch1s method was first to show that in each direction 

there is exactly one rhombus with a diagonal in that direc­

tion and at most one rhombus with side in that direction. 

To see the	 existence of the former rhombus, he considered 

the centers of chords in the given direction and in the 

perpendicular direction, to get two interesecting curves. 

The intersection point is the center for the rhombus. Such 

rhombi vary continuously as we continuously change direction, 

and so by turning 90° we get back to the same rhombus. At 

some intermediate point we have equal diagonals, and so a 

square. 

Further work by Schnirelman ([Sc]), Guggenheimer ([Gu]), 

and Jerrard ([Je]) has reduced the hypotheses on the curve. 

Most recently, Jerrard has shown that the result holds for 

l any piecewise c curve in the plane. But whether every 

planar simple closed curve contains the vertices of a 
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square is still open. 

Recently, Vaughan ([Va]) has presented a beautifully 

simple proof that any planar simple closed curve S contains 

the vertices of a rectangle. Let M = {{x,y}ix, yES} and 

define f: M ~R3 by letting (f
l 

({x,y}), f 
2 

({x,y}) be the 

midpoint of segment xy and f ({x,y}) equal the length of
3 

xy. Now M is a Mobius strip and if 5 doesn't contain the 

vertices of a rectangle f is one-to-one. 50 then f(M) is 

a Mobius strip which lies in the closed half-plane z ~ 0 

and meets z = 0 in its boundary 5. Adding the interior of 

S we get a projective plane embedded in R3 , a contradiction. 

In contrast to this, we have: 

Example 1. A simple closed curve in space may fail to 

contain the vertices of a rectangle. 

C(l,O,l) 

u 
" 

T 
B 

(0,0,0) / 

/ 

/ 

Figure 7. No rectangle has vertices on closed curve ABCD. 
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Construction. Let Q = ABCD be the quadrilateral in R3 

wi th A, B, C, and D equal to (°,1, 0), (°,°,0), (1, °,1) , 

and (1,0,0) respectively. Suppose a rectangle, R, has ver­

tices on Q. Consider the planes LA and L determined by
C 

ABD and CBD respectively. All four vertices of R can't lie 

in one of these planes; hence two vertices must lie in each 

plane. Considering planes containing a side of Q we see 

that no side can contain opposite corners of R. Since no 

side of Q is parallel to (and not in) either LA or L ' ver­
C 

tices of R must lie cyclically, one to a side of Q. Now 

the plane determined by R meets LA and L in parallel lines,c 
·so R has 2 sides parallel to the line BD. Let R = STUV, 

S E DA and T E AB, where STI IDB. Then ~ STU < 90°, a con­

tradiction. 

We close with consideration of triangular tables on 

ridges. (For details and further results see [Me2].) 

Given a planar set, X, call a point P a vertex point if some 

equilateral triangle has all vertices on X with one vertex 

at P. Now, before looking at ridges, we explore another 

continuous curve, the triad, an embedding of the letter "T." 

A somewhat technical approximation and intersection 

argument shows that if T is a planar triod then one of its 

endpoints is a vertex point. 

We can then conclude that for any planar triad, every 

point of some leg, except perhaps the junction point where 

the legs meet, is a vertex point. For otherwise every leg 

would have a non-vertex point. These three non-vertex 

points would determine a subtriod with no endpoint a vertex 



73 TOPOLOGY PROCEEDINGS Volume 6 1981 

point, violating the previous result. 

/ 
/ 

Figure 8.	 Every point of leg Ll, except the junction point 
J, is the vertex for an equilateral triangle 
with all vertices on the triad. There is always 
such a leg. 

A B 

Figure 9.	 At most 2 points of a simple closed planar curve 
can fail to be vertex points. If X ~ A,B is on 
the curve, then there is an equilateral triangle 
as above. 

Further, we see that for a simple closed planar curve, 

5, at most 2 points can fail to be vertex points. For sup­

pose we had three non-vertex points, A, B, and C. Then 

there is a planar triad in the closure, D, of the interior 

of 5 with endpoints at A, B, and C. So there is an equi­

lateral triangle with one vertex at say C and the other two 

vertices in D. Expand the triangle radially from C until a 
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second	 vertex meets S. Then, keeping the vertex at C fixed, 

move this second vertex to a point of S maximally distant 

from C, moving the third vertex so we always have an equi­

lateral triangle. At some point we must have all 3 vertices 

on S, so C is a vertex point. 
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