TOPOLOGY PROCEEDINGS

Volume 6, 1981

Pages 115-133

http://topology.auburn.edu/tp/

PRODUCTS OF SPACES OF COUNTABLE TIGHTNESS

by Yoshio Tanaka

Topology Proceedings

Web: http://topology.auburn.edu/tp/

Mail: Topology Proceedings

Department of Mathematics & Statistics Auburn University, Alabama 36849, USA

E-mail: topolog@auburn.edu

ISSN: 0146-4124

COPYRIGHT © by Topology Proceedings. All rights reserved.

PRODUCTS OF SPACES OF COUNTABLE TIGHTNESS

Yoshio Tanaka

Introduction

As is well known, the product X² of a space X of countable tightness need not have countable tightness.

Also if X is a CW-complex, X² is not always a CW-complex.

In this paper, in the first section, we consider the products of spaces of countable tightness and k-spaces. In the second section, we consider the products and the metrizability of CW-complexes.

1. Products of k-Spaces and Spaces of Countable Tightness

All spaces are assumed to be regular and \mathbf{T}_1 . We consider cardinals to be initial ordinals, and let c denote the cardinality of the continuum. Let N be the set of natural numbers.

We need the following well known example. This example will play an important role in the products.

Let α be an infinite cardinal number. Let S_{α} be the space obtained from the disjoint union of α convergent sequences by identifying all the limit points. S_{ω} is especially called the sequential fan.

We now recall some basic definitions.

Let X be a space, and let $\mathcal{J}=\{F_\gamma\colon \gamma\in\Gamma\}$ be a closed covering of X. Then X has the weak topology with respect to \mathcal{J} , if $F\subseteq X$ is closed whenever $F\cap F_\gamma$ is closed in X for each $\gamma\in\Gamma$.

A space X is a k-space (resp. sequential space), if X has the weak topology with respect to the collection of all compact subsets (resp. compact metric subsets) of X.

A space X is a k_{ω} -space [11], if it has the weak topology with respect to a countable covering of compact subsets of X.

A space X has countable tightness, $t(X) \leq \omega$, if $x \in \overline{A}$ in X, then $x \in \overline{C}$ for some countable $C \subseteq A$. It is known that every sequential space has countable tightness.

Proposition 1.1. (1) If $X \times S_{\mathbf{C}}$ is a k-space, then each closed, separable subset of X is locally countably compact.

(2) If $X\times S_{\bf c}$ has countable tightness, then each $k_{_{\rm C}}$ -subspace of X is locally compact.

Proof. (1) Suppose that there exists a closed, separable subset S of X which is not locally countably compact. Since S is regular and T_1 , as is well known, the weight of S is equal or less than c. Hence some $\mathbf{x}_0 \in S$ has a local base $\{\mathbf{U}_\alpha\colon \alpha < \mathbf{m}\}$ in S, $\omega \leq \mathbf{m} \leq \mathbf{c}$, such that each $\overline{\mathbf{U}}_\alpha$ is not countably compact.

We now use the idea of E. Michael [10; Theorem 2.1]. For $\alpha < m$, since \overline{U}_{α} is not countably compact, there is a decreasing sequence $\{F_{\alpha n}; n \in \mathbb{N}\}$ of non-empty closed subsets of \overline{U}_{α} with $\cap F_{\alpha n} = \emptyset$. Let $T_{\alpha} = \cup \{F_{\alpha n} \times n_{\alpha}; n \in \mathbb{N}\}$, where n_{α} denotes the n-th term of the α -th sequence in S_m , and let $T = \bigcup_{\alpha < m} T_{\alpha}$. Then for each compact subset K of S \times S_m , $T \cap K$ is closed in S \times S_m , because K meets only finitely many T_{α} 's and each K \cap T_{α} is a finite union of closed subsets of S \times S_m . But T is not closed in S \times S_m . This

implies that S \times S_m is not a k-space. Since S \times S_m is a closed subset of X \times S_C, X \times S_C is not a k-space. This is a contradiction.

(2) If a space has countable tightness, so does every subspace. Thus we may assume that X is a k_{ω} -space. Since $t(X \times S_C) \leq \omega$, $X \times S_C$ has the weak topology with respect to the covering of all closed separable subsets of $X \times S_C$. Since each subset S of $X \times S_C$ is contained in $X \times \overline{\pi(S)}$, where $\pi \colon X \times S_C \to S_C$ is the projection, $X \times S_C$ has the weak topology with respect to a closed covering $\{X \times F; F \text{ is a closed separable subset of } S_C \}$. Since we can assume that each F is contained in some S_C , $\alpha < \omega_1$, F is a k_{ω} -space. By [11; (7.5)], each $X \times F$ is a k-space. Thus $X \times S_C$ is a k-space. Hence, by (1) each closed, separable subset of X is locally countably compact.

We now show that X is locally compact. Let X have the weak topology with respect to a countable covering of compact subsets X_i with $X_i \subseteq X_{i+1}$. For some $X_0 \in X$, suppose $X_0 \in \overline{X-X_i}$ for each i. Since $f(x) \subseteq X$, there are countable subsets $f(x) \subseteq X - X_i$ with $f(x) \in \overline{C_i}$. Let $f(x) \in X - X_i$. Then $f(x) \in \overline{C_i}$ by the closed separable subset C of X is locally countably compact, there exists a countably compact subset K of C such that $f(x) \in \overline{K \cap (X-X_i)}$ for each i. Since K is countably compact in X, it is easy to see that K is contained in some $f(x) \in \overline{K \cap (X-X_i)}$ but $f(x) \in \overline{K \cap (X-X_i)} = \emptyset$. This is a contradiction. Thus each point of X is contained in some int f(x). Hence X is locally compact.

A space X is strongly Fréchet [14], i.e. countably bi-sequential due to E. Michael [12], if $x \in \overline{A_n}$ with $A_{n+1} \subseteq A_n$ then there exist $x_n \in A_n$ such that $x_n \to x$. If the A_n are all the same set, then such a space X is Fréchet.

Lemma 1.2. (cf. [15; 16(b) and p. 35]). Every Fréchet space which is not strongly Fréchet contains a copy of S_{ω} .

Recall that a space X is symmetric if there is a real valued, non-negative function d defined on X \times X satisfying the conditions:

(1) d(x,y) = 0 whenever x = y; (2) d(x,y) = d(y,x); and (3) $A \subseteq X$ is closed in X whenever d(x,A) > 0 for any $x \in X - A$. If we replace the condition (3) by the following: For $A \subseteq X$, $x \in \overline{A}$ if and only if d(x,A) = 0, then such a space is called semi-metric.

Corollary 1.3. Suppose $\mathbf{X} \times \mathbf{S_c}$ has countable tightness.

- (1) If X is Fréchet, then X is strongly Fréchet.
- (2) [CH]. If X is symmetric, then X is semi-metric. When X is paracompact, [CH] can be omitted.

 $\mathit{Proof.}$ (1) This follows from Proposition 1.1(2) and Lemma 1.2.

(2) Let X be a symmetric space. Every Fréchet and symmetric space is first-countable ([1; p. 129]), hence is semi-metric. So, we prove that X is Fréchet. To prove this, since $t(X) \leq \omega$, it is sufficient to show that every closed, separable subset S of X is first countable. Since

S is regular and T_1 , each point of S has a local base of cardinality \leq c in S. Then, under CH each point of S is a $G_{\hat{\Lambda}}$ -set in S by [16; Theorem 10]. When X is a paracompact space, without [CH], the separable space S is Lindelöf. Thus, by [13; Theorem 2] S is hereditarily Lindelöf. Then each point of S is a G_{δ} -set in S. Hence, then in any case each point of S is a G_{χ} -set in S. Thus, by Proposition 1.1(2) and [8; Lemma 6.11], S is first countable.

A bi-k-space, according to E. Michael [12], is characterized as a bi-quotient image of a paracompact M-space. For the intrinsic definition of a bi-k-space, see [12; Definition 3.E.1].

Corollary 1.4. Suppose $f: X \rightarrow Y$ is a closed map with $t(Y) \leq \omega$. Let X be a paracompact bi-k-space (resp. paracompact locally compact space). Then Y \times S is a k-space (resp. $t(Y \times S_C) \leq \omega$) if and only if Y is locally compact.

Proof. Let Y be locally compact. Then Y \times S is a k-space (resp. $t(Y \times S_c) \leq \omega$) by [3; 3.2] (resp. [9; Theorem 4]. So we prove the "only if" part. Suppose Y \times S is a k-space. Then, by Proposition 1.1(1), Y has property (P): Every closed separable subset is locally countably compact. Then, since $t(Y) \leq \omega$, it is easy to see that Y satisfies Lemma 9.1(b) in [12]. Indeed, if $\{F_n: n \in N\}$ is a decreasing sequence with y $\in \cap (\overline{\mathbb{F}_n - \{y\}})$, then there exist $y_n \in \mathbb{F}_n$ such that $\{y_n: n \in N\}$ is not closed in Y. Then, by [12; Theorem 9.9], each $\partial f^{-1}(y)$ is compact. Thus, by [12; Proposition 3.E.4], Y is a bi-k-space.

Next, we prove that Y is locally compact. Suppose not. Then there is a point $y_0 \in Y$ such that $y_0 \in \overline{Y-K}$ for every compact subset K of Y. Let $\mathcal{J}=\{X-K; K \text{ is compact in Y}\}$. Then \mathcal{J} is a filter base accumulating at the point y_0 . Since Y is bi-k, by [12; Lemma 3.E.2] there is a decreasing closed sequence $\{A_n: n \in \mathbb{N}\}$ satisfying the following:

- (a) $C = \bigcap A_n$ is compact;
- (b) If V is an open subset of Y with $C\subseteq V$, then $C\subseteq A_n\subseteq V \text{ for some } n; \text{ and }$
 - (c) $y_0 \in \overline{F \cap A_n}$ for all $n \in N$ and all $F \in \mathcal{F}$.

To prove some ${\bf A}_n$ is compact, suppose not. Since Y is paracompact, each ${\bf A}_n$ is not countably compact. Then there are closed discrete subsets ${\bf D}_n$ of ${\bf A}_n$ with $|{\bf D}_n|$ = ω .

Let $Y_O = C \cup_{n=1}^{U} D_n$ be a subspace of Y. Then Y_O is closed in Y. Let Z be a quotient space obtained from Y_O by identifying the compact subset C. Then, by (a) and (b), Z is not locally countably compact. Since Y_O satisfies (P) and the countable space Z is the perfect image of a closed separable subset of Y_O , so then Z is locally countably compact. This is a contradiction. Hence some A_D is compact. But, by (c), $Y_O \in \overline{F \cap N_D} = \emptyset$. This is a contradiction. Hence Y is locally compact.

Finally we prove the parenthetical part. Let $t(Y\times S_{_{{\color{blue} C}}})\;\;{\leq}\;\;\omega\;\;\text{and let}\;\;T\;\;\text{be any closed separable subset of}$ Y. Then T is a closed image of a closed separable subset S of X. Since X is paracompact, S is Lindelöf. Since X is locally compact, it is easy to see that S is a $k_{_{\rm CD}}$ -space.

Thus, since T is a quotient image of S, T is also a k_{ω} -space. Then, by Proposition 1.1(2), T is locally compact. Hence Y has Property (P). Thus, since t(Y) $\leq \omega$, Y satisfies Lemma 9.1(b) in [12]. So, by [12; Theorem 9.9] each $\partial f^{-1}(y)$ is compact. Thus Y is locally compact.

Let α be an infinite cardinal. Recall that a space X is $\alpha\text{-}compact$ if every subset of X of cardinality α has an accumulation point in X.

Lemma 1.5. Let $f: X \to Y$ be a closed map with X collectionwise normal and Y sequential. If Y contains no closed copy of S_{α} , then each $\partial f^{-1}(y)$ is α -compact.

Proof. Suppose some $\partial f^{-1}(y_O)$ is not α -compact. Then there exists a closed discrete subset D of $\partial f^{-1}(y_O)$ with $|D| = \alpha$. Hence there is a discrete open collection $\{V_d; d \in D\}$ of X with $V_d \ni d$. For each $d \in D$, since $y_O \in \overline{f(V_\alpha)} - \{y_O\}$, y_O is not isolated in a sequential space $\overline{f(V_d)}$. So then there is a sequence $C_d = \{y_{dn}; n \in N\}$ such that $y_{\alpha n} + y_O$ and $C_d \subseteq \overline{f(V_d)} - \{y_O\}$. Since $\{\overline{f(V_d)}; d \in D\}$ is hereditarily closure preserving, so is the collection $C = \{C_d \cup \{y_O\}; d \in D\}$. Let Y_O be the union of C. Then Y_O is closed in Y. Let Z be the disjoint union of C, and let C_O : C_O :

From Proposition 1.1(2) and Lemma 1.5, we have

Corollary 1.6. Let $f\colon X\to Y$ be a closed map with X paracompact sequential. If $t(Y\times S_C)\leqq \omega$, then each $\partial f^{-1}(y)$ is compact.

By Lemma 1.5, we can generalize all results in this section as follows.

Generalization. Let S be a sequential space which is a closed image of a collectionwise normal space under f such that some $\partial f^{-1}(s)$ is not c-compact. Then, for all results in this section we can replace "S_C" by "S."

By this generalization, for example we have the following:

Let Y be a Fréchet space. Let X be a collectionwise normal sequential space, and let F be a closed subset of X. Suppose Z is a quotient space obtained from X identifying F. Then Y is strongly Fréchet or ∂F is c-compact, if $t(Y \times Z) \leq \omega$.

2. CW-Complexes

The concept of CW-complexes due to J. H. C. Whitehead [17] is well-known. We recall some basic properties of CW-complexes. Let X be a CW-complex; that is, X is a complex which is closure finite (i.e. each cell of X is contained in a finite subcomplex), and which has the weak topology with respect to the closed covering $\{L_{\gamma}; \ \gamma \in \Gamma\}$ of all finite subcomplexes L_{γ} of X. Then for any subset Γ' of Γ , $L' = \bigcup_{\gamma \in \Gamma'} L_{\gamma}$ is closed in X and L' has the weak topology with respect to a closed covering $\{L_{\gamma}; \ \gamma \in \Gamma'\}$.

As a topological complex, C. H. Dowker [4] introduced the concept of the Whitehead complex. A space X is a Whitehead complex, if it is an affine complex (see [4; §1]) having the weak topology with respect to $\{\overline{e_{\lambda}}; \lambda\}$. Here $\{e_{\lambda}; \lambda\}$ is the cells of X. Recall that the closure $\overline{e_{\lambda}}$ of e_{λ} coincides with the topological closure in X of e_{λ} [4; p. 560], and this also holds in CW-complexes. Every Whitehead complex with the cells $\{e_{\lambda}; \lambda\}$ is a CW-complex with each $\overline{e_{\lambda}}$ a subcomplex [4; p. 558].

We need the canonical example S_2 due to S. P. Franklin [5; Example 5.1]. That is, $S_2 = (N \times N) \cup N \cup \{0\}$ with each point of $N \times N$ is an isolated point. A basis of neighborhoods of $n \in N$ consists of all sets of the form $\{n\} \cup \{(m,n); m \geq m_0\}$. And U is a neighborhood of 0 if and only if $0 \in U$ and U is a neighborhood of all but finitely many $n \in N$.

- Lemma 2.1. Suppose that X has the weak topology with respect to a point-countable closed covering $\{C_{\alpha}; \alpha\}$ of X.
- (1) Let each C_{α} be Fréchet. Then X is Fréchet if and only if X contains no copy of S_2 .
- (2) Let each \boldsymbol{C}_{α} be metric. Then \boldsymbol{X} is metric if and only if \boldsymbol{X} is a paracompact, strongly Fréchet space.
- $\mathit{Proof.}$ (1) Since S_2 is not Fréchet, the "only if" part follows from that every subset of a Fréchet space is Fréchet.

We prove the "if" part. Suppose X is not Fréchet. Since X is sequential, by [5; Proposition 7.3] X contains

a subspace M = (N × N) U N U {0} which, with the sequential closure topology, is a copy of S2. The countable space M intersects at most countably many Ca's, say Callara Call

We now use the method of proof of S. P. Franklin and B. V. Smith Thomas [6; Proposition 1]. Since N U {0} is a convergent sequence in M, there is X_{n_0} with N U {0} $\subseteq X_{n_0}$. Let $C_n = \{n\} \times N \cup \{n\}$ for each n. Since C_1 is a convergent sequence, there is X_{n_1} $(n_1 > n_0)$ with $C_1 \subseteq X_{n_1}$. Since X_{n_1} is closed and Fréchet, we can choose $C_{n_2}(n_2 > 1)$ and $X_{n_3}(n_3 > n_2)$ such that $C_{n_2} \cap X_{n_1}$ is at most finite and $C_{n_2} \subseteq X_{n_3}$. So, we can assume that $C_{n_2} \subseteq X_{n_3} - X_{n_1}$. In this way, we can choose C_{n_k} and $X_{n_{k+1}}$ $(n_{k+1} > n_k > n_{k-1})$ with $C_{n_k} \subseteq X_{n_{k+1}} - X_{n_{k-1}}$. Let $M' = \bigcup_{k=1}^{\infty} C_{n_k} \cup \{n_k; k \in N\} \cup \{0\}$. Then, for each $\alpha \in \Lambda$, $M' \cap C_{\alpha}$ is closed in X. Thus M' is a closed subset of X. Then M' is sequential, hence M' has the sequential closure topology. Thus M' is a contradiction.

(2) We prove only the "if" part. For $x \in X$ let $\{C_{\alpha}; C_{\alpha} \ni x\}$ be $\{C_{\alpha_1}, C_{\alpha_2}, \cdots\}$. Put $X_n = \bigcup_{i=1}^n C_{\alpha_i}$. Suppose

 $x \in \overline{X - X_n}$ for each n. Since X is strongly Fréchet, there exist $x_n \notin X_n$ such that $x_n \to x$.

Let $C = \{x_n; n \in \mathbb{N}\} \cup \{x\}$. Then the compact subset C has the weak topology with respect to a countable covering $\{C \cap C_{\alpha}; C \cap C_{\alpha} \neq \emptyset\}$ of C. Then C is contained in some finite union of C_{α} . Thus some C_{α} must contain infinitely many x_n 's, hence C_{α} $\ni x$. Then C_{α} is contained in some X_n . But this is a contradiction, for X_n $\ni x_n$ for $n \ge n_0$. Thus $x \notin \overline{X - X_n}$ for some n, hence $x \in \text{int } X_n$. This implies that X is locally metrizable. Hence X is metrizable, for X is paracompact.

Lemma 2.2. Let X be a CW-complex with the cells $\{e_\gamma\}$. If X contains no closed copy of S_α , then for each $x \in X$ the cardinality of $\Gamma_x = \{\gamma; \ \overline{e}_\gamma \ \ni \ x\}$ is less than α .

Proof. For some $x_0 \in X$, suppose $|\Gamma_{X_0}| \ge \alpha$. Since $\overline{e}_{\gamma} \in x_0$ for $\gamma \in \Gamma_{X_0}$, there exist $x_{\gamma n}$ such that $x_{\gamma n} \to x_0$ and $x_{\gamma n} \in e_{\gamma}$. Let $C_{\gamma} = \{x_{\gamma n}; n \in N\} \cup \{x_0\}$ and let $S = \cup \{C_{\gamma}; \gamma \in \Gamma_{X_0}\}$. Suppose L is any finite subcomplex of X. Then $S \cap L$ is closed in X. Thus S is closed in X. Moreover S has the weak topology with respect to $\{C_{\gamma}; \gamma \in \Gamma_{X_0}\}$. Indeed, for $F \subseteq S$, let $F \cap C_{\gamma}$ be closed in S for each $\gamma \in \Gamma_{X_0}$. Then $F \cap L = \{F \cap C_{\gamma}; e_{\gamma} \subseteq L \text{ and } \gamma \in \Gamma_{X_0}\}$. Thus $F \cap L$ is closed in S. Hence, F is closed in S. This implies that X contains a closed copy of S_{γ} . This is a contradiction.

In [6], S. P. Franklin and B. V. Smith Thomas proved that a $k_{\text{\tiny A}}$ -space with metrizable "pieces" is metrizable if

and only if it contains no copy of \mathbf{S}_2 and no sequential fan $\mathbf{S}_{\omega}.$

Analogously to this result, we have

Proposition 2.3. Let X be (a) a CW-complex (resp. Whitehead complex), or (b) a paracompact space having the weak topology with respect to a point-countable closed covering of metric spaces. Then the following are equivalent.

- (1) X is metrizable.
- (2) X contains no copy of $\mathbf{S_2}$ and no \mathbf{S}_{ω} (resp. no copy of $\mathbf{S_2}).$
 - (3) $t(X \times S_c) \leq \omega$.

Proof. (1) \Rightarrow (2) is easy. We have (3) \Rightarrow (2) from Proposition 1.1.(2). (1) \Rightarrow (3) follows from [2; Corollary 4].

(2) \Rightarrow (1). In case of (b), we have this implication from Lemmas 1.2 and 2.1.

So, we suppose X is a CW-complex. First we prove that X is Fréchet. To see this, since $t(X) \leq \omega$, it is sufficient to show that every closed separable subset $S = \overline{D}$ with D countable, is Fréchet. Clearly, D is contained in some countable union L of finite subcomplexes L_n . Since L is closed in X, S is a closed subset of L. Thus S has the weak topology with respect to a countable covering of compact metric subsets $L_n \cap S$ of S. Since S contains no copy of S_2 , by Lemma 2.1(1), S is Fréchet. Then X is Fréchet. Second we prove that X is metrizable. Since X contains no copy of S_{ω} , by Lemma 2.2, X has the cells $\{e_{\lambda}\}$ such that

 $\{\overline{e}_{\lambda}\}$, \overline{e}_{λ} = cl e_{λ} , is point finite. For $x \in X$, let $\{\overline{e}_{\lambda}; \overline{e}_{\lambda} \ni x\}$ be $\{\overline{e}_{\lambda_1}, \overline{e}_{\lambda_2}, \dots, \overline{e}_{\lambda_n}\}$. Put $E = \bigcup_{i=1}^{N} \overline{e}_{i}$. Suppose $x \in \overline{X - E}$. Since X is Fréchet, there is a convergent sequence $\{x_n; n \in N\}$ such that $x_n \to x$ and $x_n \notin E$. Since the convergent sequence is contained in a finite union of cells \overline{e}_{λ} , some \overline{e}_{λ} must contain an infinitely many x_n 's. Hence $x \in \overline{e}_{\lambda}$. Thus $\overline{e}_{\lambda} = \overline{e}_{\lambda}$ for some $i_0 \le \ell$. But this is a contradiction, because $x_n \notin \overline{e}_{\lambda}$ for all n. Then $x \notin \overline{X-E}$, which implies x € int E. Since E is compact metric, X is locally metrizable. Then X is metrizable, for X is paracompact. Since a point-finite Whitehead complex is locally finite, the parenthetic part is proved similarly.

Let I_{α} be the space obtained from disjoint union of α closed unit intervals [0,1] by identifying all zero points. Then each I_{α} is a Whitehead complex. C. H. Dowker [4] showed that $I_{\omega} \times I_{c}$ is not a Whitehead complex.

From Proposition 2.3 and Lemma 2.2, we have the following generalization of the Dowker's example.

Corollary 2.4. Let $X \times Y$ be a CW-complex and $\{e_{\lambda}; \lambda\}$ be the cells of Y. Then X is metrizable, or each cardinality of $\{\lambda; \ \overline{e}_{\lambda} \ \ni \ y\}$ is less than c.

Proposition 2.5. Suppose that X₁ and X₂ are CW-complexes (resp. Whitehead complexes). Then the following are equivalent.

- (1) $t(X_1 \times X_2) \leq \omega$.
- (2) $X_1 \times X_2$ is a k-space.

 $(3) \ \ \, X_1 \times X_2 \ \, is \ \, a \ \, \text{CW-complex} \ \, (\text{resp. Whitehead complex}) \, .$ $\, Proof. \quad (1) \ \, + \ \, (2) \, . \quad \text{Since t} \ \, (X_1 \times X_2) \ \, \stackrel{\leq}{=} \ \, \omega \, , \ \, X_1 \times X_2 \ \, \text{has}$ the weak topology with respect to the closed covering of all closed, separable subsets of $X_1 \times X_2$. Each subset S of $X_1 \times X_2$ is clearly contained in $\Pi_1(S) \times \Pi_2(S)$, where $\Pi_i \colon X_1 \times X_2 + X_i \ \, (i=1,2) \ \, \text{are projections.} \quad \text{Thus } X_1 \times X_2 \ \, \text{has the weak topology with respect to a covering } \{F_1 \times F_2; F_i \ \, \text{is a closed separable subset of } X_i \} \, . \quad \text{As is seen in the proof of Proposition 2.3, } (2) \ \, \rightarrow \ \, (1) \, , \ \, \text{each } F_i \ \, \text{is a } k_\omega \text{-space.}$ Hence, by $[11; \ \, (7.5)] \ \, \text{each } F_1 \times F_2 \ \, \text{is a } k\text{-space.} \quad \text{This implies } X_1 \times X_2 \ \, \text{is a } k\text{-space.}$

respectively. Since X_1 and X_2 are complexes; affine complexes, $X_1 \times X_2$ is a complex; affine complex with cells $\{e_{\gamma} \times e_{\delta}\}$ respectively. Moreover, if X_1 and X_2 are CW-complexes, then $X_1 \times X_2$ is closure finite. Thus, to prove that $X_1 \times X_2$ is a CW-complex (also, a Whitehead complex), we only show that $X_1 \times X_2$ has the weak topology with respect to a collection $\{\overline{e}_{\gamma} \times \overline{e}_{\delta}\}$. Each compact subset of $X_1 \times X_2$ is contained in a compact subset of $X_1 \times X_2$ with type A \times B. Then, each compact subset of $X_1 \times X_2$ is contained in a finite union of $\overline{e}_{\gamma} \times \overline{e}_{\delta}$. Since $X_1 \times X_2$ is a k-space, this implies that $X_1 \times X_2$ has the weak topology with respect to the collection $\{\overline{e}_{\gamma} \times \overline{e}_{\delta}\}$.

We have (3) \rightarrow (1) from that every CW-complex is sequential, hence t(X1 \times X2) $\stackrel{\leq}{=}$ ω .

Let X be a CW-complex with the cells $\{e_{\gamma}\}$. Then we shall call X point-finite; point-countable; locally

countable, if the covering $\{\overline{e}_{\gamma}\}$ of X is so respectively.

Lemma 2.6. Let X be a Fréchet CW-complex or a White-head complex. If X is a point-countable, then it is locally countable.

Proposition 2.7. Let X be a Fréchet CW-complex (resp. a Whitehead complex). Then the following are equivalent.

- (1) X is point-countable.
- (2) X is locally countable.
- (3) X^2 is a CW-complex (resp. Whitehead complex). Proof. (1) \rightarrow (2) follows from Lemma 2.6.
- (2) \rightarrow (3). Every locally countable CW-complex is a k_{ω} -space, and every product of two locally k_{ω} -spaces is a k-space. Thus (2) \rightarrow (3) follows from Proposition 2.5.
- (3) \rightarrow (1). Suppose that X is not point-countable. Then, by Lemma 2.2, X contains a closed copy of S $_{\omega_1}$.

Thus x^2 is a k-space which contains a closed copy of s_{ω}^2 . Hence s_{ω}^2 is a k-space. However, by [7; Lemma 5], s_{ω}^2 is not a k-space. This is a contradiction.

In terms of a set-theoretic axiom BF(ω_2) below, we shall consider the product X \times Y of CW-complexes X and Y.

 $\mathrm{BF}(\omega_2)$: If $\mathrm{F} \subseteq \{\mathrm{f};\ \mathrm{f}\colon \mathrm{N} \to \mathrm{N} \ \mathrm{is\ a\ function}\}$ has cardinality less than ω_2 , then there is a function $\mathrm{g}\colon \mathrm{N} \to \mathrm{N}$ such that $\{\mathrm{n} \in \mathrm{N};\ \mathrm{f}(\mathrm{n}) > \mathrm{g}(\mathrm{n})\}$ is finite for all $\mathrm{f} \in \mathrm{F}$. Hence CH implies $\mathrm{BF}(\omega_2)$ is false.

In [7], Gary Gruenhage proved the following result (*):

(*) $\mathbf{S}_{\omega} \times \mathbf{S}_{\omega_{1}}$ is a k-space if and only if $\mathrm{BF}(\omega_{2})$ holds.

From this result (*), if the assertion of Proposition l.l by replacing "S_c" by "S_ ω_1 " holds, then BF(ω_2) is false.

Lemma 2.8. I $_{\omega}$ $^{\times}$ I $_{\omega}$ is a Whitehead complex if and only if BF(ω_2) holds.

Proof. "If." Since $\mathrm{BF}(\omega_2)$ holds, by the proof of [7; Lemma 1] it turns out that $\mathrm{I}_{\omega} \times \mathrm{I}_{\omega_1}$ is sequential. Hence $\mathrm{I}_{\omega} \times \mathrm{I}_{\omega_1}$ is a Whitehead complex by Proposition 2.5. "Only if." $\mathrm{I}_{\omega} \times \mathrm{I}_{\omega_1}$ is a k-space and it contains a closed copy of $\mathrm{S}_{\omega} \times \mathrm{S}_{\omega_1}$, so that $\mathrm{S}_{\omega} \times \mathrm{S}_{\omega_1}$ is a k-space. Thus by the result (*), $\mathrm{BF}(\omega_2)$ holds.

Proposition 2.9. If X and Y are Fréchet CW-complexes (resp. Whitehead complexes), then the following are equivalent.

(1) $X \times Y \ is \ a \ CW-complex$ (resp. Whitehead complex)

if and only if X or Y is locally finite, otherwise X and Y are locally countable.

(2) BF(ω_2) is false.

Proof. (1) \rightarrow (2) follows from Lemma 2.8.

(2) \rightarrow (1). The "if" part of (1) does not use (2). Suppose that X or Y is a locally finite CW-complex. Then X or Y is locally compact. Thus $X \times Y$ is a k-space. Suppose that X and Y are locally countable. Then they are locally k_{ω} -spaces, hence X \times Y is a k-space. In any case, $X \times Y$ is a k-space. Hence $X \times Y$ is a CW-complex by Proposition 2.5. The parenthetic part is proved similarly. Next we prove the "only if" part. Suppose that Y is not locally countable. Then by Lemma 2.6, Y is not a pointcountable CW-complex. Then by Lemma 2.2, Y contains a closed copy of $\mathbf{S}_{\boldsymbol{\omega_1}}$. To show X is point-finite, suppose not. Then X contains a closed copy of S by Lemma 2.2. Thus X \times Y contains a closed copy of $S_{\omega} \times S_{\omega_1}$. Since BF(ω_2) is false, $\mathbf{S}_{_{\boldsymbol{\omega}}}$ \times $\mathbf{S}_{_{\boldsymbol{\omega}_1}}$ is not a k-space by the result (*). But, since X \times Y is a CW-complex, $S_{\omega} \times S_{\omega_1}$ is a k-space. This is a contradiction. Thus X is point-finite, hence is locally finite by Lemma 2.6. Similarly, Y is locally finite if X is not locally countable. This finishes the proof.

The following questions (a) and (b) remain, the latter is related to Proposition 2.7.

Questions. (a) For every CW-complexes X and Y, does (1) \leftrightarrow (2) of the previous proposition hold?

(b) Is X locally countable if X² is a CW-complex?

Supplement

Quite recently, through Zhou Hao-xuan, the author learned of the following result due to Liu Ying-ming "A necessary and sufficient condition for the product of CW-complexes," Acta Mathematica Sinica, 21 (1978), 171-175 (Chinese).

[CH] Let X and Y be CW-complexes. Then $X \times Y$ is a CW-complex if and only if either X or Y is locally finite, or X and Y are locally countable.

Referring to the above paper and G. Gruenhage [7], we can prove that the answers to the questions (a) and (b) are affirmative.

The author wishes to thank Zhou Hao-xuan for his translation of Liu's paper.

References

- [1] A. V. Arhangel'skii, Mappings and spaces, Russian Math. Surveys 21 (1966), 115-162.
- [2] _____, The frequency spectrum of a topological space and the classification of spaces, Soviet Math. Dokl. 13 (1972), 1185-1189.
- [3] D. E. Cohen, Spaces with weak topology, Quart. J. Math., Oxford Ser. 5 (1954), 77-80.
- [4] C. H. Dowker, Topology of metric complexes, Amer. J. Math. 74 (1952), 557-577.
- [5] S. P. Franklin, Spaces in which sequences suffice II, Fund. Math. LXI (1967), 51-56.
- [6] and B. V. Smith Thomas, On the metrizability of k_{in} -spaces, Pacific J. of Math. 72 (1977), 399-402.
- [7] G. Gruenhage, k-spaces and products of closed images of metric spaces, Proc. Amer. Math. Soc. 80 (1980), 478-482.

- [8] P. W. Harley III and R. M. Stephenson, Jr., Symmetrizable and related spaces, Trans. of Amer. Math. Soc. 219 (1976), 89-111.
- [9] V. I. Malyhin, On tightness and suslin number in exp X and in a products of spaces, Soviet Math. Dokl. 13 (1972), 496-499.
- [10] E. Michael, Local compactness and cartesian products of quotient maps and k-spaces, Ann. Inst. Fourier, Grenoble 18, 2 (1968), 281-286.
- [11] _____, Bi-quotient maps and cartesian products of quotient maps, Ann. Inst. Fourier, Grenoble 18, 2 (1968), 287-302.
- [12] _____, A quintuple quotient quest, General Topology and Appl. 2 (1972), 99-138.
- [13] S. Nedev, Symmetrizable spaces and final compactness, Soviet Math. Dokl. 8 (1967), 890-892.
- [14] F. Siwiec, Sequence-covering and countably bi-quotient mappings, General Topology and Appl. 1 (1971), 143-154.
- [15] _____, Generalizations of the first axiom of countability, Rocky Mountain J. of Math. 5 (1975), 1-60.
- [16] R. M. Stephenson, Jr., Symmetrizable, J-, and weakly first countable spaces, Can. J. Math. XXIX (1977), 480-488.
- [17] J. H. C. Whitehead, Combinatorial homotopy. I, Bull. of Amer. Math. Soc. 55 (1949), 213-245.

Tokyo Gakugei University Koganei, Tokyo, Japan