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THE EMBEDDING OF HOMEOMORPHISMS 

IN CONTINUOUS FLOWS 

W.R. Utz 

1. Introduction 

This paper gives an overview of results known for the 

problem of embeddip.g a self-homeomorphism of a topological 

space into a continuous flow. A way to view the problem is 

that of determining exactly which homeomorphisms may occur 

in a flow. When viewed in this way the problem is revealed 

as both non-trivial and fundamental in topological dynamics. 

In the study of embedding one assumes a given space 

and a given self-homeomorphism of the space and then seeks 

conditions on that pair to insure the existence of a con­

tinuous flow on the space for which the given homeomorphism 

occurs for a fixed value from the group of reals. 

Let X be a topological space and G(+) a topological 

group. The ordered triple (X,G,n) is a dynamical system if 

(1) IT: X x G -+ X is continuous, (2) n (n (x,gl) ,g2) 

n(x,gl+g2) and (3) n(x,e) = x for e E G, the identity, and 

every x E X. When G is the additive group of reals, the 

dynamical system is called a continuous flow. If G is the 

sub-group of integers, then the system is a discrete flow 

and is simply the integral iterates of the homeomorphism 

n(x,l) . 

The problem of embedding a self-homeomorphism f: X -+ X 

in a continuous flow is that of finding a dynamical system 

(X,G,n), G = reals, such that n(x,l) = f(x). 
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The problem just described is called the restricted 

embedding problem since the flow is restricted to the space 

X. If the space, X, for which f is a self-homeomorphism 

may be enlarged to secure a flow containing f, then the 

problem (which is easier to solve because of this freedom) 

is called unrestricted. This problem is discussed in Sec­

tion 5. 

Before specializing X we wish to mention that Gary D. 

Jones has considered the more abstract problem of embedding 

to groups from dense subgroups with the base space, X, 

fixed. Let (X,G* ,n * ) be a given dynamical system where G* 

is an algebraic subgroup of G which is dense in G, then Jones 

*[13] shows that if X is a complete metric space and n is 

uniformly continuous, then (X,G* ,n * ) can be embedded in a 

dynamical system (X,G,n). 

Also, we call attention to the results of P. L. Sharma 

and T. L. Hicks [23] wherein they give sufficient conditions 

for the simultaneous embedding of two self-homeomorphisms 

of the reals in a continuous flow on the reals. 

In the sections that follow we describe results for 

subsets of the line, simple closed curves and 2-cells 

(Section 2), the plane (Section 3) and fordiffeomorphisms 

(Section 4). 

2.	 Embeddings for the Line, Simple Closed Curve, Disc 

If f: X ~ X can be embedded in a continuous flow then 

g: X ~ X can be, also, if g and f are topologically equiva­

lent. Moreover, f: X ~ X can be embedded in a continuous 

flow if, and only if, g: Y ~ Y can be embedded in a 
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continuous flow where Y is homeomorphic to X and g is the 

induced homeomorphism. Thus, results for connected subsets 

of the line, for a circle and for the closed unit disc are 

valid for their respective topological classes. 

Embedding results for a subset of a line are old since 

this is very close to the study of the iterations of certain 

functions. If f is a monotone increasing, continuous real 

function from a connected subset of the reals onto that set, 

then the embedding problem is equivalent to the problem of 

continuous powers of the function. 

It is easily seen that for a connected subset of the 

line (more generally, any subset of the plane) a self­

homeomorphism must be orientation preserving to be a candi­

date for embedding. This condition is also sufficient in 

the case of a connected subset of a line, R. 

Theorem 1. A self-hom~omorphism of a connected subset 

of R can be embedded in a continuous flow if~ and only if~ 

the homeomorphism is orientation preserving (order preserv­

ing). 

Theorem 1 has been proved in this setting by N. J. 

Fine and G. E. Schweigert [5], M. K. Fort [9], Sharma and 

Hicks [23] and others. A constructive proof was given by 

the author [27] using results of Morgan Ward [28]. 

The following theorem characterizes self-homeomorphisms 

of a simple closed curve embeddable in a continuous flow. 

Theorem 2 (Foland and utz [B]). Let f be an orienta­

tion preserving homeomorphism of a simple closed curve~ X~ 
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onto itself. It is possible to embed f in a continuous 

flow if~ and only if~ either 

1) X contains a fixed point under f~ or 

2) f is periodic on X~ or 

3) f is transitive on X. That is~ for some x E X~ the 

orbit of x under f, L:oofi(x)~ is everywhere dense in X. 

Definitive results for a closed 2-cell are not available 

but the following theorems give sufficient conditions for 

embeddability. 

A self-homeomorphism, f, of a metric space (X,p) is 

said to be almost periodic if E > 0 implies the existence 

of a relatively dense sequence, {m }, of integers such thati 
m. 

p(x,f l(X) < E for all x E X and i = ±1,±2, •••. 

Theorem 3 (Foland [6]). Any almost periodic~ orienta­

tion preserving self-homeomorphism of a closed 2-cell can 

be embedded in a continuous flow on the 2-cell. 

Foland [6] also shows that the embedding of Theorem 3 

is unique (in the sense of orbit closure decomposition of 

the continuous flow) in case the given homeomorphism is 

strictly almost periodic (i.e., not periodic). He gives 

an example of a periodic self-homeomorphism of the disc and 

two embeddings into continuous flows for which the orbit 

decompositions of the continuous flows are different. 

Uniqueness, in the sense of orbit decompositions of the 

continuous flow, exists in the case of embeddings on a 

simple closed curve and on connected subsets of R. 
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Theorem 3 improves an earlier theorem of [9] where 

regular almost periodicity was required of f. 

The following theorem is a consequence of Jones' study 

of embeddings in the plane (described in Section 3). 

Theorem 4 (Jones [14]). Let f be an orientation pre­

serving self-homeomorphism of the closed 2-cell D. Assume 

that the set of fixed points N J of f on D is finite andJ 

contained in D - int D. If for each pair of points X J 

Y E D-N there exists an arc A c D-N joining x and y such 

that fn(A) tends to a fixed point as n + ±ooJ then f can be 

embedded in a continuous flow on D. 

The theorem improves a theorem of [13] wherein all 

arcs tend to the same fixed point. 

3. Embeddings for the Plane 
2 

Err~edding theorems for the plane, R , are primarily 

due to Stephen A. Andrea [1], Robin Ault [2] and Gary D. 

Jones [15]. 

Any flowable homeomorphism (i.e., one that is a candi­

date for embedding in a flow) must be orientation preserving 

since if the given homeomorphism, f, is flowable, then 

n(x,l) = f, n(x,O) isthe identity and through n(x,t), 

o < t 2 1, they are isotopic. 

A contracting homeomorphism f, of the plane is one 

for which there is a real number r, 0 < r < 1, such that 

p(f(x),f(y)) .2. r p(x,y) for all x, Y E R 
2 

. For such a 

homeomorphism there is a unique fixed point. Foland has 

given a constructive proof of the following theorem. 
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Theorem 5 (Foland [7]). If f is an orientation pre­

2serving contracting self-homeomorphism of R then f can be3 

2embedded in a continuous flow on R . 

Using a theorem of T. Homma and S. Kinoshita [11] one 

secures a slightly more general result. 

Theorem 6 (Jones [15]). Let f be an orientation pre­

serving self-homeomorphism of R2 with one fixed point xO. 

Suppose that f n (x) ~ as n ~ and f n (x) ~ x as n ~ 0000 o 
for all x ~ xO. Then f can be embedded in a continuous 

2
flow on R • 

Gy Targonski [25] (with	 R. Graw) has announced a non­

2embeddability condition for R : If a homeomorphism from a 

simply connected subset of the plane into itself has a 

k-cycle (k > 2) but no fixed point, then it is not embed­

dable. 

Hereafter, in this section, we will only consider 

fixed point free orientation preserving self-homeomorphisms 

of the plane. 

Let f be an orientation	 preserving self-homeomorphism 

2 'h f' d '	 2, 'd bo f R Wlt out 1xe p01nts. A set A c R 1S sal to e 

2
f-divergent if corresponding to any compact set K c R , 

there exists a natural number N(K) such that fn(A) n K = ¢ 

for In I > N. 

2
Andrea [1] has defined the binary relation, , on R

2 
as x ~ y, x, Y E R , if and only if, there is an f-divergent 

arc having x, y as endpoints (the arc is to be degenerate 

if x = y). The relation ~ is an equivalence relation for 
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orientation preserving, fixed point free homeomorphisms and 

Andrea calls the equivalence classes the fundamental regions 

of f. 

Theorem 7 (Andrea [1]). f is equivalent to a trans la­

tion if~ and only if~ it has one fundamental region. 

That is, an orientation preserving, fixed point free 

self-homeomorphism of the plane may be embedded in a flow 

which is topologically equivalent to a translation if, and 

only if, the homeomorphism has exactly one fundamental 

region. 

The number of fundamental regions for a flowable 

homeomorphism may be any finite number except 2 (Andrea 

[1]), a countable infinity or an uncountable infinity 

(Ault [2]). 

The f un amenta1 reglons nee not e open ln R . Theyd · db' 2 

are arcwise connected, unbounded, invariant under f and if 

a simple closed curve is contained in a fundamental region, 

then its interior is also. 

In the two figures we give examples of fundamental 

2regions of homeomorphisms of R where there are 5 fundamental 

regions. 

In Figure 1 the homeomorphism moves points one unit of 

arc length along the curves. Of the fundamental regions, 

U_ and U are open, while the other three are closed sets.l l 

The homeomorphism is visibly embeddable in a flow. 

The homeomorphism of Figure 2 (Andrea [1]) is not embed­

dable in a flow even though it is orientation preserving and 
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U U-2 -1 

Figure 1 

U
-2 

Figure 2 
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fixed point free. In U the cells are moved	 downward too 
the next cell so that the pointset {Pi} is invarient as a 

set. If the cells have diameter 1, the transformation on 

the complementary set is to be the indicated movement through 

arc-length 1. It's intuitively evident that the required 

flow lines could not get through the pointset {Pi}. 

2Jones [15] defines relative equivalence in R with 

2respect to f. If A c R , then x ~ y (mod A) if x, yare 

endpoints of an arc C c A for which fn(C) ~ 00 as n ~ too. 

2A proper flowline for f is a subset B of R for which 

(a)	 f(B) = B, (b) B is homeomorphic to the real line and 

2(c) B U {oo} is a Jordan curve on	 the sphere R U {oo}. 

Jones	 gives special attention to the following sub­

2class of all self-homeomorphisms of R . 

Class J. Assume of f that it is an orientation pre­

2serving, fixed-point free self-homeomorphism	 of R for which 

(1) the fundamental regions, Ui' are finite in number, (2) 

if x E Ui - int Ui' then x E C c U - int U where C is ai i 

proper flowline, (3) if x l ,x E int Ui' then Xl ~ x (mod2 2 

Ui) · 

Theorem 8 (Jones [15]). Let f be a Class J homeo­

morphism. Suppose that U and Ui~ i = 2,3,···,n~ are not
l 

separated. Then 

(a) U1 is open 

(b) flu can be embedded in a continuous flow~ and
l 

(c) if flu can be embedded in a continuous flow TIl~l 

then f can be embedded in a continuous flow TI~ where 

TI(x,r) = TIl(x,r) if (x,r) E 01 x Reals 
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(d) if flu l can be embedded in a continuous flow TIl~ 

such that TIl restricted to U x [0,1] is uniformly continu­l 

ous~ then f can be embedded in a continuous flow TI. 

Jones [15] gives cannonical forms for the cases where 

f generates m = 3,4,5,6 fundamental regions and indicates 

how this sequence may be continued for all natural numbers, 

m. 

The work of Ault does not require that the number of 

fundamental regions be finite. The class of homeomorphisms 

considered are fixed point free and satisfy the following 

conditions. 

Class A. Assume that f is an orientation preserving 

self-homeomorphism of the plane. The fundamental regions 

of f are to satisfy these conditions: (1) Each fundamental 

region is invariant under f. (2) Each fundamental region 

is a set of one of the following forms: (a) a Jordan line; 

(b) an open connected set, bounded by a collection of 

disjoint Jordan lines; or (c) a set an in (b), plus some 

of the boundary lines. (3) The collection of Jordan lines 

which are either whole fundamental regions, or boundary 

lines of fundamental regions, forms a regular curve family. 

Each member of the family described in (3) is called 

a fundamental line. 

An f-cell, put intuitively, is a maximal subset of a 

given closed half-plane in which f can be considered equiva­

lent to a translation (i.e., embedded in a translation). 

The base line of an f-cell is a boundary line of the f-cell. 
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Theorem 9 (Ault [2]). If f is fixed point free and 

flowable~ then f is in Class A. If U is any f-cell whose 

base line is a fundamental line of f~ then flU is flowable. 

Theorem 10 (Ault [2]). Let f be a fixed point free~ 

Class A self-homeomorphism of the plane. Then~ there is a 

finite or infinite sequence UO,Ul ,··· of f-cells such that 

(1) the base line of each Un is a fundamental line 

(2) the Un cover R2 

(3) the Un are pairwise disjoint~ except that Uo and 

U
l 

meet along their common base line 

(4) the Un form a locally-finite family. 

Given any such sequence~ f is flowable if~ and only if~ 

for each n > O~ flU is flowable. 
- n 

4. Differentiable Embeddings 

One may ask for conditions sufficient to embed a 

Cr-diffeomorphism in a CS-flow (s < r) in contrast to the 

topological problem where r = s = O. There are some 

results for s > 0 but the conditions to insure differentia­

lbility for the flow, even C , are destined to be restrictive 

as revealed by theorems that assure one that such cases are 

not numerous. 

For example, J. Palis has shown 

Theorem 11 (Palis [22]). The subset of Cr-diffeo­

morphisms for a compact COO manifold without boundary that 

embed in Cl-flows is of first category. 

It isn't even easy to err~ed a Cr-diffeomorphism in a 
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topological continuous flow if the base space is a COO mani­

fold without boundary. 

Theorem 12 (Palis [21]). If M is a COO manifold without 

boundary and if U is any neighborhood of the identity in 

r
the group of c diffeomorphisms of M~ then there exists an 

open set V c U such that no element of V embeds in a topo­

logical flow. 

For linear manifolds it is possible to identify enough 

conditions to insure embeddability of a smooth homeomorphism 

in a differentiable flow. 

For example, consider the circle, S, as the interval 

[0,1] with endpoints identical and consider the set 

~ c Diff [0,1] (the group of COO homeomorphisms of [0,1] 

with COO inverses) defined by g E ~ if g(x) < x for all 

° < x < 1 and gl (0) ~ 1 ~ gl (1). Since S is compact there 

is an induced distance function, d, given by the uniform 

cO topology on Diff [0,1]. 

Theorem 13 (Kopell [16]). Given fEE and E > O~ it 

is possible to find agE Diff [0,1] such that d(g,f) < E 

and 9 embeds in a COO flow. 

Diffeomorphisms of connected subsets of the line have 

been studied extensively, especially by P. F. Lam [17], 

with emphasis on the embedding of a Cl-diffeomorphism in a 

Cl-flow. 

Let X be a connected subset of R. Clearly, a differ­

°
entiable self-homeomorphism, f, of X must satisfy fl (x) > 
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to be	 embeddable in a differentiable flow. If, in addition, 

lf is C and has no fixed point, then 'f can be embedded in 

l a C	 continuous flow on X (Bodewadt [4]). If f has one 

fixed point, then the problem	 is more difficult. If one 

2adds the condition that f be C to ft (x) > 0 then f can be 

lembedded in a C flow (Szekeres [24]). M. K. Fort [9] and 

Gordon G. Johnson [12] have given conditions to replace the 

2C condition of Szekeres. 

lBy adding a variety of conditions to that of being c , 

Lam [18,19,20] has secured numerous sufficient conditions 

for the embeddability of f on any connected subset of R. 

CnAult [2] has given an example of a diffeomorphism 

2 2 n
f: R + R which is flowable but not C flowable (n > 0). 

Also, Ault shows that even to assume f to be a COO diffeo­

morphism will not make anyone of the conditions of Class A 

to be superfluous. 

5.	 The Unrestricted Embedding Problem 

In the previous sections the given self-homeomorphism 

of X was embedded in a continuous flow on X, itself. This 

is called a restricted embedding. If one is permitted to 

enlarge X then the embedding problem always has a solution. 

Such	 an embedding is called unrestricted. 

That is, one is now given a subgroup, G* , of a group 

G and a dynamical system (X,G* ,n * ). One seeks a dynamical 

system (Y,G,n) such that Y contains X homeomorphically; 

*	 * *n(y,g	 ), g E G , is invariant on a subset Z of Y homeo­

*morphic to X and nlZ x G is topologically equivalent to 

* * n : X	 x G + X. 
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There are two well-known [8] embeddings for self-

homeomorphisms of any separable metric space and one of 

them, the twisted cylinder (or suspension), is valid for 

any topological space. 

We first describe the twisted cylinder solution of the 

problem as generalized by Jones [13]. 

* Let G be a topological group and G be a discrete 

* * subgroup of G. Let (X,G ,TI ) be given where X is any 

topological space. Let (xl,gi) (x ,g2) provided2 

x 2 where (xi,gi) E X x G 

for i 1,2. The relation ~ is an equivalence relation. 

Let Y (X x G)/~. If (xl,gl) E xE Y by n(x,g) = y. With 

this definition (Y,G,TI) is a dynamical system. We take 

Z = {x E YI (x,o) E x} and define the homeomorphism 

h:	 X ~ Z by h(x) x, for (x,o) E x. Z is homeomorphic to 

* * * X and TIIZ x G is topologically equivalent to TI : X x G ~ X. 

The properties of the new space, Y, are a function of 

* both X and TI. Evidently there has not been a study of this 

question in any depth. That is, the topological properties 

* of Y for specific spaces X and mappings TI. However, with 

* very little effort [9] one may see that independent of TI , 

Y is connected, regular, perfectly separable, separable or 

compact if X has the respective property. 

A second solution to the unrestricted embedding problem 

* is known when G is the integers, G is the reals and X is 

a separable metric space. This solution depends on a flow 

of Bebutoff [3] and is called the Bebutoff solution of the 

problem. 
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Let F be the set of all real functions f(y) defined 

and continuous for all y E R. The Bebutoff metric for F is 

p(f,g) = sup min {sup If(y) - g(y)l,l/A}. 
A>O Iy I,::,A 

For f E F, t E R, define ¢(f,t) f(y+t) E F to secure a 

continuous flow on F. 

Now, to secure the base space, Y, for the Bebutoff 

flow, let Y be all sequences f = (f ,f ,---), f E F and
l 2 l 

o .::. f l (y) < 1 for y E R. For f, g E Y 

,co -1 
d(f,g) = Li=12 P (fi,gi) 

provides a metric in Y. For each fEY, t E R define 

to secure the Bebutoff flow on Y. 

If X is a separable metric space, then any discrete 

flow given by a self-homeomorphism T: X ~ X can be embedded 

in the Bebutoff flow. To achieve this embedding, let Q
w 

denote all sequences x = (x l ,x ,---), xi E R, 0 ~ xi .::. 12 

with metric 

-i Ia (x,y) L
co 

. 1 2 x. y,l
1= 1 1 

for x, y E Q . It's well-known that Q is a universalw w 
* metric space and so there is a homeomorphism H: X ~ X C Q . w 

Corresponding to the given self-homeomorphism T, define 

M = H T H- 1 on x*. For x = (x
1

,x
2
,---) E x* define 

f , (u) x ~n) + (u-n) (x ~n+l) _ x ~n) ) ; 
1 1 1 1 

n < u < n + 1; n = O,±I,±2,- - -, 

iI, 2 , 3 , - - -, where 

(n) = (x(n) x(n) ) n()
xl' 2' = M x. 

Let f = (f ,f ,---) where the f are defined above. Then,
l 2 i
 

*
 fEY. Let H denote the homeomorphism just described of 
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* * *X into Y and let H (X ) Z c Y. Then, n(Z,t) is an invari­

ant subset of Y and n(f,t) in a continuous flow on Z. Z is 

homeomorphic to X, n(f,l) leaves Z invariant and n(f,l) is 

topologically equivalent to the given homeomorphism, T. 

Jones [13] notices that of the two solutions of the 

problem given, they can't be the same for all initial homeo­

morphisms T. For if both apply (i.e., X is a separable 

metric space) then they are surely different if T has a 

fixed point because n does not leave the point fixed for 

the twisted cylinder solution but does leave it fixed for 

the Bebutoff solution. Lacking a fixed point, the solutions 

are topologically equivalent. 

Theorem 14 (Jones [13]). Let f be a self-homeomorphism 

of a metric space X. Let (Y,R,n) be any solution of the 

unrestricted problem for f~ where for convenience of nota­

tion we assume that X c Y~ such that 

(1) Y is a metric space~ 

(2) {n(x,t)} in an equicontinuous family of homeo­

morphisms~ and 

(3) if x E X and N n X ~ ¢ for every neighborhood~ 

N~ of n(x,tl)~ then t is an integer.l 

Then~ (n(X,R) ,R,n) is topologically equivalent to the 

twisted cylinder solution of the embedding problem. 

Specifically, as a corollary, one has the following 

theorem. 

Theorem 15 (Jones [13]). Let f: X -+ X be a self-

homeomorphism of the separable metric space~ X. The 
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twisted cylinder solution and the ~ebutoff solution of the 

unrestricted embedding problem for f are topologically 

equivalent if, and only if, f has no fixed points. 
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