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CARDINAL INVARIANTS, PSEUDOCOMPACTNESS 

AND MINIMALITY: SOME RECENT ADVANCES 

IN THE TOPOLOGICAL THEORY OF 

TOPOLOGICAL GROUPS 

w.w. Comfortl and Dougla88 L. Grant2 

o.	 Introduction 

This work contains some new results, and some new 

proofs of old results, and some points of view which we 

hope serve to simplify or unify certain portions of the 

topological theory of topological groups. This is not a 

comprehensive survey. We give no description of the two 

most significant examples to have appeared in recent years-­

Shelah's example [Sh2] , assuming CH, of a group of cardi­

nality Ml with no Hausdorff, non-discrete group topology, 

and van Douwen's example [vD] , assuming MA, of two countably 

compact groups whose product is not countably compact--and 

we ignore entirely those results which appear to belong 

more properly to harmonic analysis, or to the applications 

of category theory to the theory of topological groups, or 

to free topological (semi-) groups generated by topological 

spaces. (We note in passing that these latter fields have 

lThe results of the present paper were presented (in 
abbreviated form) by this author at the VPI&SU topology 
conference in Blacksburg, Virginia in March, 1981. 

2This author gratefully acknowledges the financial 
support of the National Science and Engineering Research 
Council of Canada under operating grant A8489, and the 
gracious hospitality of Wesleyan University where he spent 
the academic year 1979-80 on sabbatical leave. 
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been systematically surveyed within the p~st few years; see 

for example [S-Tl], [S-T2] and [F].). We confine our atten­

tion instead to the study of (certain) cardinal functions 

defined on groups, to some remarks concern~ng pseudocompact 

groups, and to a comprehensive survey of the recent litera­

ture concerning minimal groups. 

Every topological group considered here is assumed to 

satisfy the TO separation axiom. As is well-known [HRl] 

(8.4), this ensures that our groups are completely regular, 

Hausdorff spaces, i.e., Tychonoff spaces. 

Infinite cardinals are denoted by symbols like a, S, 

K and A, while w denotes specifically the least infinite 

cardinal; ordinals are denoted by ~, n, ~ and the like. 

For an infinite cardinal a, the symbol a+ denotes the 

least cardinal greater than a. 

For a topological space X we set 

J(X} = {u c X: U is open}, and 

]*(X) = ](X) \ {,0}. 

We usually denote by the symbol e, together with a 

subscript when this is appropriate, the identity element 

(that is, the neutral element) of a group. 

We denote by Z, T, Q and R the integers, the circle, 

the rationals and the reals, respectively, each with its 

usual algebraic operations and each with its usual topology. 

The symbol ~ denotes weak sum; that is, 

l{iE I: x. 
1 

~ e.}1
1 

< w}. 

Part A: Some Cardinal Functions 

For a topological space X = <X,]) and x E X, we 

define 
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w(X) min{ I BI : B is a base for J}, 

(x,X) min{ I BI : B is a local base at x}, 

llJ (x,X) min{ I VI : V c J, nv = {x} } , 

X (X) sup{X (x,X) : x E X}, 

ljJ (X) sup{ljJ(X): x E X}, 

d(X) min{ IDI : D is dense in X}, 

K(X) min{ I KI : K E K is compact, and X UK} , and 

o(X) IJI· 
When X is a homogeneous space--in particular, when X is a 

topological group--the two functions X(·,X), ljJ(·,X) are 

constant on X and hence X(X) = X(x,X), ljJ(X) = ljJ(x,X) for 

every x E X. 

1. The Relation W:: )( el( 

1.1. Lemma. Let G be an infinite locally compact3 

group. Thenw(G) =X(G)·K(G). 

Proof· (~) That X(G) 2 w(G) is clear. We show 

K(G) < w(G). Let H be an infinite"open, a-compact sub­

group of G. Then w(H) > w, and since each coset of H is 

a-compact we have 

K(G) 2 K(H)· IG/HI 2 w· IG/HI 2 w(H)· IG/HI = w(G). 

Since x(G) 2 w(G) and K(G) < w(G) and w(G) > w, we have 

X(G) • K (G) < w (G) . 

(2)' Let {U~: ~ < X(G)} be a local base at e with 

-1 
u~ = u~ , and for ~ < X(G) let A~ be a subset of G with 

IA~I < K(G) such that G = A~U~. That {XU~: ~ < X(G), 

x E A~} is a base for G is now clear: if V is open in G 

-1
and p E V then there is ~ < X(G) such that PU~ U~ c V and
 

-1

there is x E A~ such that p E XU~; from x E PU~ we have 
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-1 
P e: xU~ c:: pO~ U~ c V, 

as required. 

For a locally compact Abelian group G, the dual group 
A 

G of G is (by definition) the set of continuous homomorphisms 

from G to the circle group T, with the compact-open topology. 

A base at 1 e: Gis given by sets of the form 
A 

{f e: G: If(x) - 11 < lin for x e: K} 

with n < w as K runs through the family of compact subsets 

of G. It is enough to restrict K to a family K of compact 

sets such that every compact subset of G is a subset of an 

element of K. Since such K exist with IKI = K(G) we have 

X(G) = K(G)-W = K(G) for infinite G and hence by Pontrjagin 
A 

duality X(G) = K(G) also. This observation allows [C~] a 

simple proof of a useful result (see [HR1] (24.14». 

1.2. Theorem. Let G be a locally compact Abelian 

group. Then w(G) w (G) • 

Proof. If G is finite then G and G are isomorphic. 

If G is infinite then from 1.1 above we have 

as required. 

We note in passing that the equality d(G) d(G) fails 

for many (locally compact, Abelian) groups G. For example 
2a

if G = T with a > w then d(G) ~ a by the Hewitt ­

Marczewski-Pondiczery theorem; but G is the weak sum 

$ Z in the discrete topology, and hence d(G) IGI 
t;<2(l t;
 

We continue with a consequence of Lemma 1.1.
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1.3. CoroZZary. Let G be a non-discrete, a-compact, 

ZocaZZy compact group. Then 

(a) w (G) = X (G) ; 

(b) I GI = 2w (G); and 

(c) oG = 2w (G) . 

Proof· (a) Since X(G) > wand K(G) < w, this is 

immediate from 1.1. 

(g) The relation IGI < o(G) < 2w (G) holds for every T
l 

space. That 

2w (G) = 2X (G) = 2~(G) ~ IGI 

follows from the Cech-Pospisil theorem ([HR2] (28.58) or 

[En] (Problem 3G». 

(c) 2w (G) = IGI < o(G) < 2w (G). 

We remark that not every non-discrete, locally compact 

group G can be shown to satisfy IGI = 2w (G)--indeed for 

every (infinite) cardinal A ~ , including those A not of2w 

the form 2 K 
, there is a non-discrete, locally compact group 

G such that IGI = A. To see this let A be a discrete group 

of cardinality A > and take G = T x A.2w 

2. The Number of Open Subsets 

Hajnal and Juh~sz [HJ1, HJ2] showed that a question of 

de Groot [deG], whether or not o(X) has the form for2 K 

every (Hausdorff) space X, is not settled by the usual 

axioms of set theory. That is, there are models of ZFC in 

which de Groot's question is answered "Yes," and models 

where it is answered "No." More recently Shelah [Shl], 

using a result of Kunen and Roitman [KR], has defined a 

model of ZFC in which there is an infinite Hausdorff space 
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X such that o(X) ~ (o(X»w; indeed, She1ah [Sh1] can arrange 

even cf(o(X)} = w. It is reasonable to ask whether this 

pathology can extend to the context of topological groups; 

the situation is as follows. 

For locally compact groups G the relation o(G) = 2w (G) 

always holds. We prove this result, improving 1.3(c) 

above, in 2.1. On the other hand Juhasz has indicated, 

for example in a seminar in April, 1980 at Wesleyan Uni­

versity, that the construction of [HJ2] can be modified, 

using a technique of Roitman [Ro], to produce (in a suita-
Ho H1 

b1e model of 2 = H < 2 = H ) a topological group G1 3

for which o(G) = H ; the group G may be chosen hereditarily
2 

separable and non-Linde1of. Finally, the relation 

o(G) = (o(G)-)w holds for all infinite topological groups 

G. This result is given in [J] (4.9) and in [C2]; the 

proof given below in 2.2 provides, at least formally, a 

bit more information than that of [J]. 

2.1. Theorem. Let G be a locally compact group. 

Then o(G) 2w (G) . 

Proof. If G is discrete we have w(G) = IGI and 

2 1G1o(G) = . Let us assume, then, that G is not discrete. 

Let H be a subgroup of G generated by a compact neighborhood 

of e and let {X~H: ~ < a} be a faithful enumeration of the 

coset space G/H. Each of the cosets X~H is open in G and 

the function 

U -+ (U n X~H: ~ < a) 

is one-to-one from J(G) onto TT~<aJ(X~H); hence 

o(G) = IJ(G) I = n~<aIJ(X~H) I (O(H»a.= 
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Since w(G) = a-w(ll) we have 

'o(G) = {O(H»a = (2 w (H»a 

as required. 

Definition. Let S be a cardinal number and G a topo­

logical group. Then G is totaZZy S-bounded if for every 

nOA-empty open subset U of G there is A c G with IAI < S 

such that G = AU. The total boundedness number of G, 

denoted a{G), is the cardinal 

a(G) miniS: G is totally 8-bounded}. 

Notation. For G a topological group, set 

y(G) = min{o{U): U E ]*(G)}. 

2.2. Theorem. Let G be a non-discrete topological 

group. Then (a) o{G) = y{G)w; and (b) if a < a{G) then 

o{G) y(G)a. 

+Proof· We first prove (b) , assuming a{G) > W . Let-
U and U be neighborhoods of e such that o (Ul) = y{G) andl 2 

such that if A c G with G = AU2 then IAI > a. Let 

U = ' let V be a neighborhood of e with w- l c U,Ul n U2 

and let A c G be maximally V-dispersed in the sense that 

(1) if a, a' E A with a =t= a' then aV n a'V = ~, and 

( 2) A is maximal with respect to (1) • 

For x E G there is a E A such that xV n aV 9= ~ and hence 

X E aw-l c AU c AU2. It follows that G = AU
2 

and hence 

IAI > a. 

The functions TTaEA]{aV) ~ ](G) and J(G) ~ TTaEAJ(au) 

defined by the rules 

f = (f(a): a E A> ~ UaEAf(a) and W ~ (W n aU: a E'A) 

respectively are one-to-one. It follows that 
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(y (G) ) IAI = (0 (V) ) IAI < 0 (G) < (0 (U) ) IAI (y (G» IAI 

and hence o(G) = (o(G»u. 

It remains only to prove (a), assuming u(G) = w. Let U' 

be a neighborhood of e with o(U) y(G), let'{U : n < w} be n 

a cellular family in G with each Un C U, and let G = AU with 

IAI < w. Then, as before, 

(y (G)) w = TIn<wO (Un) 2. ° (G) 2.TIaEAo (aU) = (y (G)) IAI 2. (y (G)) w. 

3.	 Concerning Closed Subgroups 

The comprehensive monograph of Hewitt and Ross [HR1], 

[HR2] contains inter aZia a great deal of information on 

topological properties of closed subg~oups and their quo­

tient groups. With no attempt here to be complete or com­

prehensive, we cite from [HR1] several results describing 

properties which, if enjoyed by both Hand G/H, are 

enjoyed by G itself. 

The restriction in 3.1 to closed subgroups H of G is 

dictated in part by our convention that the coset space 

.G/H, which is of course a group if and only if H is normal 

in G, is to satisfy the TO separation axiom; see in this 

connection [HR1] (5.21). In fact, this restriction is 

unnecessary	 in parts of 3.1.
 

Parenthetical references in 3.1 are to sections of
 

[HR1] .
 

3.1. Theorem. Let G be a topoZogicaZ group and H a
 

closed subgroup, and let P be anyone of the properties
 

listed beZow. If both Hand G/H have P, then G has P.
 

(a) compact (5.25); (b) locally compact (5.25); (c) com­


pactly generated (5.39 (i) ); (d) metrizable (5.38 (e) );
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(e) d < a (fixed a .:. w) (5.38 (f»; (f) connected (7.14). 

Let us note that to this list of properties might be 

added the property ~ ~ a (fixed a .:. w). That is: 'if {e} 

is the intersection of ~a relatively open subsets of Hand 

if {H} is the intersection of ~a open subsets of G/H, then 

{e} is the intersection of <a open subsets of G. 

It is natural to ask, in the face of 3.1(e),· whether 

it is possible to find a topological group G and a closed 

subgroup H with d(H) > d(G). Before describing the answer 

to this question we record an important theorem of Kuz'minov 

[Kz], widely used but not widely understood, which is in 

fact one of the few deep and difficult results in the topo­

logical theory of topological groups. 

Definition. A space X is dyadic if for some cardinal 

number a there is a continuous function from {O,l}a onto X. 

3.2. Theorem (Kuz'minov [Kz]). Every compact group 

is dyadic. 

Using the full power of Pontrjagin duality theory, 

Vi1enkin [V] in 1958 had already proved Theorem 3.2 for 

compact Abelian groups. A readable English-language 

adaptation of Vilenkin's proof is given in [HRl] (25.35), 

but apparently there is no valid proof written in English 

of Kuz'minov's theorem. 

There is an extensive literature on dyadic spaces. 

For our present expository purposes we need only, in addi­

tion to Theorem 3.2, the simple fact (see for example [EP] 
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(Theorem 1» that a dyadic space X is the continuous image 

of {O,l}u with u = w(X). 

Let us return now to the question whether d(H) > d(G) 

is possible for H a closed subgroup of a topological group 

G. For locally compact groups G, the matter is easily 

settled in the negative. 

3.3. Lemma [CI]. Let G be a locally compact group. 

Then 

d(a) w(G) ~ 2 (G), and K(G) ~ d(G); and 

(b) d(G) is minimal with respect to (a)--that is, if 

u > wand w(G) ~ 2
u

, K(G) ~ u, then d(G) < u. 

Proof. Statements (a) are elementary. We prove (b). 

Let H be a compact, normal Go subgroup of G, so that G!H is a 

metric space and 

d(G!H) ~ K(G!H) ~ K(G) ~ u. 

Since H is a compact group with w(H) ~ w(G) ~ 2
u there is 

U 
by Kuz'minov's theorem a continuous function from {O,I}2 

U 
onto H, and since d({O,1}2 ) 2 u by the Hewitt-Marczewski­

Pondiczery theorem we have d(H) 2 u as well. It then fol­

lows from Theorem 3.I(e) that d(G) < a, as required. 

3.4. Theorem [CI]. Let G be a locally compact group 

and H a cLosed subgroup. Then d(H) ~ d(G) . 

Proof. From 3.3 we have w(H) < w(G) < 2d (G) and 

K(H) < K(G) ~ d(G)i hence d(H) < d(G). 

It has been shown by Ginsburg, Rajagopalan and Saks 

[GRS], using the free topological group generated by a 

topological space, that there are topological groups G 
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(not locally compact) and closed subgroups H of G with 

d(H) > d(G). Indeed, according to [CI] (Theorem 3.3), this 

anomaly can arise to the maximal extent consistent with the 

usual cardinal inequalities in topology governing density 

character of subspaces: For every pair (a,6) of infinite 

a
cardinals with 6 2 2 , there are a topological group G and 

a closed subgroup H of G such that d(G) = a and d(H) 6. 

Let us remark finally that d(H) > d(G) is possible for 

H a dense subgroup of a compact group G, even with G the 

Stone-Cech compactification of H. The following argument 

extends trivially that of [Cl]. 

2a 
3.5. Let a be a infinite capdinaZ, G = {O,l} and 

a
H = {x E G: I {~	 < 2 : x~ + O} I < w}. 

2
aThen (a) d(G) ~ a; (b) d(H) = ; and (c) G = 8(H). 

Ppoof· (a) is again a special case of the Hewitt-

Marczewski-Pondiczery theorem, and (c) is a special case of 

G1ick~berg [Gs]	 (Theorem 2), of Corson [Co] (Theorem 2), 

and of Kister [Ki]. For (b) we note first that 

d(H) 2 IHI (2 a )w = 2a , 

2aand second that	 if D c H with IDI = y < then 

2a 2
a

I{~ < : x~ # 0 for some x E D}\ ~ y.w < 

and hence there is n < such that the open set TI-l({l})2a 
n 

2amisses D. Thus	 D is not dense in H if IDI < and hence 

d (H) > 2a • 

Part B: Concerning Pseudocompact Groups 

A topological group is said to be ppe-compact if its 

completion relative to either of its two natural uniform 
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structures (it doesn't matter which one) is compact. It is 

a theorem of Weil [We] that when this occurs the completion 

G of G carries naturally the structure of a topological 

group of which G is a subgroup. Further, G is pre-compact 

if and only if G is totaZZy bounded, i.e., for every 

U € J*(G) there is finite F c G such that G = FU. It is not 

difficult to see that a pseudocompact group, and a fortiori 

a countably compact group, is totally bounded. A pseudo­

compact group G is Go-dense in its Weil completion G (in 

the sense that every non-empty Go of G meets G) and con­

versely: given a compact group K, a dense subgroup G of 

K is pseudocompact if and only if G is Go-dense in K [cf. 

[CRs2] (Theorem 1.2)]. It is occasionally useful, and com­

pletely justified by the foregoing remarks, to replace the 

study of pseudocompact groups by the study of Go-dense 

subgroups of compact groups. 

There is an extensive literature devoted in part to 

pseudocompact groups; see for example [CRs2], [I], [WI], 

[W2], [CSo], [50], [CRbl], [CRb2]. Somewhat capriciously, 

we here select for discussion just two or three questions 

of interest. 

4. Small Dense Subgroups 

Given a compact group K, how small a dense, pseudo-

compact subgroup G does K possess? If w(K) = a > w then K 

has a cofinal Go-family of cardinality a W and the selection 

of one point from each of these gives a set which generates 

a G~-dense subgroup G of K satisfying IGI ~ aWe This 

straightforward reasoning appears so tight that one is 
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tempted to believe the upper bound a 
W to be optimal. In 

fact, however, Itzkowitz [I] for compact Abelian groups and 

Wilcox [Wl],	 [W2] for compact groups K in general showed 

2athat ifw(K)	 < then there is a dense, pseudocompact 

~ubgroup G of K with IGI ~ aWe In the following argument 

taken from [CSa] we improve this statement. 

4.1.	 Theorem [CSa]. Let K be an infinite compact 

2a group with w(K) < . Then there is a dense, countably 

compact subgroup G of K such that IGI ~ aWe 

Proof. There is by 2.5(a) and 2.2 a dense subset DO 

W
of K with 1001 ~ a < a let GO be the subgroup of K gener­

ated by DO. If ~ < w+ and a family {G : n < ~} of subgroupsn 
of K has been defined satisfying 

GO c G , c G for n' < n < ~ and n n 
W

IG I < a for	 n < ~,n 
let D~ be a set formed by choosing one accumulation point 

in K from each countably infinite subset of Un<~Gn and let 

G~ be the subgroup of K generated by (Un<~Gn) U D~. The

subgroup G =	 U~<w+G~ is clearly as required. 

Let p be a uniform ultrafilter over the countably 

infinite, discrete set w, that is, let p E U(w) = S(w)\w. 

Following Allen Bernstein [Be] and Saks [Sa] we say that a 

(completely regular, Hausdorff) space X is p-compact if for 

every function f: W + X the continuous Stone extension 

f: S(w) ~ S(X) satisfies f(p) E X. (Actually the definition 

of [Be] and [Sa] differ formally from that just given, but 

for present purposes the formulation above seems optimal.) 
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As Bernstein noted [Be], every p-compact space is	 countably 

compact, and the product of p-compact spaces is p-compact. 

In work following [CSa], Ginsburg and Saks [GS] noted that 

(if p E U(w) is chosen in advance) then for every	 countably 

infinite subset f[w] in Un<~Gn with f: w + K = S(K) one 

might as well choose f(p) E K for the required accumulation 

point. The resulting group G is then p-compact and one has 

the following improvement of 4.1. 

4.2. Theorem [GS]. Let p E U(w) and Zet K be an 

infinite,	 compact group with w(K) < 2a . Then there is a 

Wdense, p-compact subgroup Gof K such that IGI ~ a • 

As the proofs of 4.1 and 4.2 make clear, the groups 

G may be chosen to contain any subset S of K specified in 

advance such that lsi ~ aWe 

When (K,G) is a pair as in 4.1 with w(K) 2
u 

we have 

2a 
from 1.3(b) above that IKI = 2 and hence 

W u 
IGI ~ a ~ 2 < IKI. 

Does a given compact, Abelian group K with w(K) > W 

contain a dense, pseudocompact subgroup G such that 

IGI < IKI? It is shown in [CRb2], using a combinatorial 

result of Cater, Erdos and Galvin [CEG], that the answer is 

"Yes" for all groups K except (perhaps) some or all of those 

for which the cardinal number u = w(K) satisfies 

)U ~ u < )u+l with u a limit ordinal such that cf(U) = W. 

(Here as usual the beth cardinals )u are defined recursively 

by the rules )0 = W, )U+l 2)U, and = L~<U)~ for non­)u 

zero limit ordinals u.) 
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Assuming GCH, the answer is "No" precisely for such 

groups, and these are precisely the groups K with 

cf(w(K» = w. In any event the answer depends only on 

the cardinal number w(K), not on the algebraic structure 

of K [CRb2]. 

The following more delicate question, raised in [CSo], 

has turned out to be undecidable in ZFC: Do there exist 

a compact, Abelian group K and a pseudocompact, totally 

dense subgroup G of K such that IGI < IKI? (Recall that 

a subgroup G of K is totally dense in K if G n H is dense 

in H for every closed subgroup H of K.) In summary, the 

situation is as follows. 

4.3. Theorem [CRb2]. Let a > w. There are a compaat 3 

Abelian group K with w(K) = a and a totally dense subgroup 

G of K such that IGI < IKI if and only if a = 10g(2a ) and 

cf(a) = w. 

Assuming GCH, the cardinal numbers a of 4.3 with a > w 

are exactly those for which J ~ a < J +1 with cf(u) = w,u U 

and one has the following result. 

4.4. Theorem [CRb2]. Assume GCH. The~e is no pair 

(K,G) with K a compact, Abelian group3 G a totally dense 3 

pseudocompact subgroup of K, and IGI < IKI. 

On the other hand, as is noted in [CRb2], it is easy 

to produce such pairs (K,G) in suitably bizarre models 

of ZFC. For example, let 

J < a = ~w < J 21 
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~ 

in a model in which {2 k k < w} has a strictly increasing 

subsequence. (The existence of such models is assured by 

Easton [Ea]i see also [CEG].) The torsion subgroup G ofl 
~k 

K = TT(Z(Pk) ) is totally dense in K [CSo] and satisfies 

~k ~k 
IGII = Lk 2 <TIk 2 = IKli 

and there is by 4.1 above a dense, pseudocompact (even 

countably compact) subgroup G of K such that2 
W a

IG21 ~ a ~ ()2)W = )2 < 2 = IKI· 

The pair (K,G), with G the group generated by G U G is2 ,l 
as required. 

5.	 Concerning Products 

It is known that the product of any set of pseudo-

compact groups is pseudocompact [CRs2]. The corresponding 

question for countably compact groups remained open for 

many years, indeed until the appearance (alluded to in our 

Introduction) of van Douwen's example [vDl, defined using 

MA, of two countably compact groups whose product is not 

countably compact. As is shown carefully in [vDl, the 

construction given there cannot be carried out without MA. 

It is not now known whether there are models of ZFC in 

which every finite product--indeed perhaps every product-­

of countably compact groups is countably compact. We now 

indicate a result, noted some years ago by one of us [C2], 

which appeared at the time likely to provide a (large) 

family of countably compact groups whose product is not 

countably compact. To administer the coup de grace to the 

problem it remained only to show that for every p E U(w) 
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there is a countably compact group not p-compact. This 

project has proved less tractable than anticipated. 

The equivalence (a) ~ (b) of Theorem 5.1 for 1[1 = 1 

is given by Ginsburg and Saks [GS]. For less restricted 

classes [, see [C3] and [Sa]. 

5.1. Theorem. For a (possibly proper) class [ of 

Tyahonoff spaces, the following statements are equivalent. 

(a) Every product (repetitions permitted) of a set of 

elements of Cis countably compact; 
w 

(b) every product (repetitions permitted) of <22 

elements of [ is countably compact; and 

(c) there is p E U(w) such that every element of [ 

is	 p-compact. 

Proof. That (a) ~ (b) is clear. We have remarked 

above, with Bernstein [Be], that the product of p-compact 

spaces is p-compa.ct; hence (c) ~ (a). We show (b) ~ (c). 

If (c) fails then for p E U(w) there are X E Cand 
p 

f : w ~ X c S(X ) such that f (p) E S(X )\X. For ease 
p p p p p P 

of exposition we assume the function p ~ X is one-to-one 
p 

from	 U(w) into C. We define 

f: W ~ X = TTpEU(w)Xp C TTpEU(w)S(Xp ) 

by the rule (f(n)) = f (n) and we note from (b) that since 
p	 p 

2w 
IU(w) I < 2 there is q E U(w) such that f(q) E X. It 

then follows, with TI denoting the projection from X onto q 

X , that q 

f (q) = n-o:E{q) EX. 
q q q 

a contradiction. 
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5.2. Corollary [C2]. The following statements are 

equivalent. 

(a) Every product of countably compact groups is 

countably compact; 

(b) there is p E U(w) such that every countably com­

pact group is p-compact. 

The suggestion that there might exist models of ZFC 

in which condition (b) of 5.1 above holds is perhaps not 

so ridiculous as it at first appears. Van Douwen [vD] 

(Theorem 7.3) notes in effect that if some p E U(w) satis­

fies X(p,U(w» = w+ then every initially w+-compact space 

is p-compact. (That such p exist is Kunen's Axiom; it 

follows, of course, from CH, and it is consistent with 

~O ~l 
2 2 K [Ku].) Not every countably compact group,2 

however, is initially w+-compact; the simplest example to 
+ 

this effect is probably {x E {O,l}w : I{~ < w+: x~ + O}! ~ w}.

6. Pseudocompact Refinement Topologies 

It is a common and honorable endeavor, much prosecuted 

by topologists, to find or characterize those topologies on 

a set which are extremal (i.e., minimal or maximal) with 

respect to a specified topological property. It is known, 

for example, that every Abelian group admits a maximal 

totally bounded topological group topology [eRsl]; the 

extensive literature concerning minimal (Hausdorff) group 

topologies is the subject of §§7-8 of the present article. 

We show here that, except in the trivial (that is, the 

metrizable) case, a compact topology on an Abelian group 
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is not maximal among pseudocompact topologies. This result 

is closely related to the statement that every non-metriza­

ble, compact Abelian group admits a proper, dense, pseudo-

compact subgroup. Theorem 6.3 below, which continues work 

initiated in [CSo], is taken from [CRbl]. 

6.1. Lemma [CSo]. Let (G,J) be a totally discon­

nected~ compact Abelian group with w(G) > w. Then there 

is a proper~ dense~ pseudocompact subgroup H of G such that 

IG/HI < w. 

Proof. Let Gp be the p-primary subgroup of the dual 

group G of G, so that G= EDpGp Since 161 = w(G} > w there 

is p such that IGp I > w, and the socle S of G (consistingp 

of all elements of order 2P) satisfies S = ED(Z(p}}a for 

some a > w. The annihilator A of S in G and the canonical 

homomorphism ~ satisfy 

¢: G ~ G/A = S = (Z(p))a, 

and the group {x E S: I{; < a: x; f o}1 2 w}, which is 

countably compact, extends to a maximal, proper subgroup 

H of S. Then H = ~-l(H} is as required. 

6.2. Lemma. Let G be a compact Abelian group and C 

the	 component of the identity. If w(C) = a > w then there 

Tais a continuous homomorphism of G onto • 
A 

Proof. It is enough to show that the dual group G of 

G contains a subgroup S isomorphic to $(Za), for then the 

annihilator A of S in G and the canonical homomorphism ¢ 

will satisfy 

za¢: G ~ G/A s 
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Let I be a maximal independent subset of C, for X E I let 

X E G with xl c = X, and "let i = {X: X E I}. Denoting by 

Hand S the subgroups of C and Ggenerated by I and i, 

respectively, we have up to isomorphism the inclusions 

G ~ S = ~iEIZi and C ~ H = ~iEIZi. 

Then with W the injective hull of C we have from 

Ici w(G) = a > w and ~iEIZi c C c W = ~iEIQi 

that III = a, as requried. 

6.3. Theorem [CRbl]. Let G be an Abelian group and 

J a compact group topology with w(G,J> > w. Then J is not 

maximal among pseudocompact group topologies for G. 

Proof. Let C be the component of the identity in G. 

From Lemma 1.1, the comment following Theorem 3.1 and the 

fact that \IJ X for compact groups, we have 

w < w(G) = l.jJ(e,G) .2. l.jJ(e,C) el.jJ(C,G/C) = w(C) ew(G/C) 

and hence w(C) > w or w(G/C) > w. We consider these non­

exclusive, but exhaustive, cases separately. 

Case 1. w(G/C) > w. There is by Lemma 6.1 a proper, 

dense, pseudocompact subgroup H of G/C such that I (G/C)/HI 

< w. It is not difficult to check that with ~ the canoni­

cal homomorphism of G onto G/C and with H = ~-l(H), the 

group H is a proper, dense, pseudocompact subgroup of G 

with IG/HI < W (see [CSo] for details). The topology J' 

for G generated by J U {xH: x E G} is then a pseudocompact 

group topology for G such that J' :j? l. 

Case 2. w(C) a > w. There is by Lemma 6.2 a con­

tinuous homomorphism ~ of G = (G,J> onto . Let l.jJ be aTa 

a
homomorphism of T onto T such that ~(t) = TT{t : s < a}s
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for t < t~: ~ < a) E ~Ta (a finite product) and define 

H = graph(~o~) c G x T. 

We claim that the group H is Go-dense in the compact group 

G x T (and hence pseudocompact [CRs2]). Indeed let F be 

a non-empty Go of G, let pET, and let A be a non-empty 

subset of ~[F] for which there is ~ < a with 

A = (TIa\{~}[A]) x T. Let x E F with ~(x) E A and choose 

any element y of F such that ~(y) E A and 

~(Y)a\{~} = ~(x)a\{~} and
 
-1


~(y)~ = ~(x)~.p.(~(~(x») . 

-1 a -1 -1 -1Then ~(x y) E ~T and ~(~(x y) = ~(x y)~ p. (~ (~ (x) ) ) 

and hence 

i.e., <y,p) E (F x {p}) n H. 

The projection from H onto G is a one-to-one function, 

continuous when H has the (pseudocompact) topology inherited 

from G x T with G <G,J). The required pseudocompact 

topology J I :::> J for G is now defined by the requirement+ 
that this projection be a homeomorphism to <G,J / ). 

6.4. Remarks. (a) It is well-known and easy to 

prove that a pseudocompact metric space is countab1y com­

pact and hence compact. Thus in Theorem 6.3 the hypothesis 

w(G,J) > w cannot be omitted. 

(b) The pseudocompact topology JI ~ J constructed in 

the proof of Theorem 6.3 is, like every totally bounded 

topology on an Abelian group, the topology induced on G by 

some group of homomorphisms from G to T [CRsl]. The fol­

lowing argument, taken from [CSa] and due in effect to 
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Lewis C. Robertson, shows that the subgroup H of Hom( G, T > 

which induces JI is proper. Restated: the finest totally 

bounded topology on an (infinite) Abelian group G--that is, 

the topology induced by all of Hom(G,T>--is not pseudocom­

pact. Indeed there is in this topology a (necessarily 

closed) subgroup H of G with IG/HI = w, and then G/H is a 

countably infinite, pseudocompact and Lindelof (hence 

compact) topological (Hausdorff) group. The existence of 

such	 a group is incompatible with Theorem 1.3(b) above. 

Part	 C: Minimality in Topological Groups 

We reiterate for emphasis our standing convention: 

all topological groups referred to are to satisfy the 

Hausdorff separation axiom. 

7.	 Permanence Properties and Sufficient Conditions 

Definition. A topological group (G,J> is minimal if 

there is no coarser (Hausdorff) topological group topology 

for G; and (G,J> is totally minimal if its (Hausdorff) 

quotient groups are minimal. 

Clearly, compact groups are totally minimal.
 

Equiv~lently, one might define the two concepts by
 

noting that every continuous, bijective (resp., cont~nuous,
 

surjective) homomorphism from a minimal group to a (Haus­


dorff) group is open. Further defining a homomorphism to
 

be almost open if the image of a unit neighborhood is  
dense in a unit neighborhood, we see that the two proper­


ties imply, respectively, the following two properties
 

introduced by Husain [H] in the context of the open map­


ping theorem: (G,J) is B (A) (resp., B (A» if every

r 
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continuous almost open bijective (resp., surjective) homo­

morphism from G to a (Hausdorff) group is open. It is an 

easy exercise to show locally compact groups are B(A), and 

Husain established that complete metrizable groups are, as 

well. Brown [Br] later showed that Cech-completeness is 

a sufficient condition. 

In the same context, Sulley [Sy] proved for Abelian 

groups the following criterion for inheritance of both 

Husain's properties by closures and dense subgroups, which 

the second author [Gl] showed holds for arbitrary groups. 

7.1. Theopem. Let H be a dense subgpoup of a gpoup G. 

(a) If H is Br(A) (resp., B(A)), then G is Br(A) (resp., 

B(A)) . 

(b) If G is Br(A) and H has non-tpiviaZ intepseation 

with evepy non-tpiviaZ aZosed nopmaZ subgpoup of G, then 

H is Br(A). 

(c) If G is B(~) and H intepseats evepy aZosed nopmaZ 

subgpoup N of G in a dense subgpoup of N, then H is B(A). 

In 1972, R. M. Stephenson [Stl] established, for G 

compact, the precise analog of Theorem 7.l(b) with "minimal" 

replacing "Br(A)". For H pre-compact, it therefore follows 

that minimality is equivalent to the Br(A) property, and 

total minimality to B(A). The assumption that G be compact 

was removed by Banaschewski [Ba]i a statement analogous to 

(c) for totally minimal groups was established independently 

by Schwanengel [Sc] and by Dikranjan and Prodanov [DPl]. 

Let U denote the multiplicative group of complex 

roots of unity, the torsion subgroup of the circle group T. 



250 Comfort and Grant 

Since U contains all proper closed subgroups of T, it is 

totally minimal and so B(A), the latter fact having been 

established independently by Sunyach [Su]. In fact one of 

us [G2] has shown arbitrary powers of U to be totally 

minimal; the same result has been .established independently 

by Dikranjan and Stojanov [DSjl], and by Eberhardt and 

Schwanengel [ES] for countable products. Indeed Stojanov 

[Sjl] has shown that every product of totally minimal 

periodic groups is totally minimal. 

Let G denote the group given by {x E U: order of x is m 

not divisible by any m-th power except I}. Sulley [Sy] 

shows G to be Br(A) and hence minimal, but not B(A) and2 

hence not totally minimal, by observing that, since every 

torsion element has some power of squarefree order, G
2 

intersects every closed subgroup of T, but G n {l,-l,i,-i}
2 

{l,-l}. 

The next result, inspired by Prem Sharma, and its 

corollary, due originally to Stephenson, is a clear indica­

tion that the analogy between the two pairs of properties 

does not extend much farther. 

7.2. Theorem. Let G be an Abelian topological group 

with sufficiently many continuous characters to separate 

points. If G is minimal~ then G is pre-compact. 

Proof. The weak topology induced on G by all its 

continuous characters is a Hausdorff topology since points 

are separated; it is pre-compact by [CRsI]. By the mini­

mality of G, this topology coincides with the original 

topology. 
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7.3. Corollary [Stll. A locally compact Abelian 

group which is also minimal is compact. 

More generally, we have this simple extension of 7.3. 

7.4. Corollary. Let G be a minimal group,= TIiEIGi 
with each G. a locally compact Abelian group. Then each1. 

G. (and hence GJ is a compact group.1.
 

Proof. G is pre-compact and hence each group
 

Gi = TIi[Gl is pre-compact and locally compact; hence each 

group Gi is compact. 

The assumption of commutativity is essential in 

Theorem 7.2: Dierolf and Schwanengel [DS2] have shown 

that the non-Abelian group 

{ (~ ~): a > 0, b E R}, 

with the natural (locally compact, non-compact) topology 

. h . d f 4. .. 1J.n erJ.te rom R , 1.S a m1.n1.ma group. 

Other properties close to compactness, such as counta­

ble compactness, seem to be of little relevance in this 

context, however. If G is a group, e its identity element, 

and U an uncountable cardinal, we set 
U

~wGU = {x E G ; I{~ < u: x~ ~ ell ~ wl. 

It is known [GIl that if K is a compact group ~ith non­

trivial centre, then L KU is dense in Ka but the diagonalw 

subgroup of (Cent K)u has trivial intersection with EwK
u 

. 

The latter is then countably co~pact, but not Br(A) and 

hence not minimal. Suppose now that D is a finite, 

discrete, simple, non-Abelian group (such as AS)' so that 
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the only closed normal subgroups of D
Ct 

are of form 

oCtIT{Et;: t; < Ct}, where each Et; = {e} or D. Then L
w inter­

sects all such subgroups densely, and hence L
W 

oCt is counta­

bly compact and totally minimal (but not compact) . This 

example appears in [G3] and, in a somewhat different con­

test, in [EOS]. 

The permanence properties of the groups in our several 

classes have also been studied extensively. For instance, 

all (our properties are inherited by closed central sub­

groups (cf. [Gl]). However, every discrete group can be 

embedded as a (closed) subgroup of a locally compact, mini­

mal group [OS2]. 

The situation concerning products is at least as com­

plex. Let Z(p) denote the integers with (pre-compact) 

group topology having as a fundamental system of unit 

neighborhoods the family {pnz: n ~ I}, and let Z(p) denote 

as usual the Weil completion of Z(p). The following result 

is from [OSj2]. 

7.5. Theorem. For an AbeZian topoZogicaZ group G, 

the folZowing are equivalent: 

(1) all subgroups of G are minimal; 

(2) all subgroups of G are totally minimal; 

(3) G is one of the following types of groups: (i) a 

subgroup of Z(p) for some p; (ii) $F , with each F a finite p p 

Abelian p-group; (iii) X x F , with X a rank 1 subgroup of p 

Z{p) and with F a finite Abelian p-group.p 

The methods of [DSj2] are derived in part from [PI], 

where it is shown that the groups Z(p) are the only 
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infinite compact Abelian groups for which all subgroups are 

minimal. 

Each group Z(p) is minimal (in fact, totally minimal 

and hence B(A)), but its square is not minimal [Dv] and 

hence, since pre-compact, not Br(A). (That Z(p) x Z(p) is 

not minimal is established by Doitchinov by the direct and 

elegant observation that with H the subgroup of Z x Z
k 

k 2 k 2 
generated by the three elements (p ,0>, (O,p >and 

k-l s2 
(l'~s=lP >, the family {Hk : 1 ~ k < w} is the unit neigh­

borhood filter of a Hausdorff topology on Z x Z strictly 

coarser than that of Z{p) x Z{p).) 

Another result of Doitchinov [Dv], that the product of 

a minimal group with a compact one is minimal, was general­

ized in one direction by the second author [G3] who 

replaced "minimal" by "Br{A)", and more recently and 

extensively by Eberhardt, Dierolf and Schwanengel, who 

established the following result. (A group is sup-aompZete 

if it is complete in its two-sided uniformity.) 

7.6. Theorem [EDS]. The produat of two minimaZ 

(pesp., totally minimal) gpoups, one of whiah is sup­

aompZete, is minimaZ (pesp., totaLLy minimaL). 

While it is somewhat beyond the scope of the paper, 

we note for contrast the result of Banaschewski [Ba] to 

the effect that any product of pre-compact minimal rings 

or R-modules is minimal. This result was obtained inde­

pendently by Dikranjan [0] for rings with unit. 
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Eberhardt, Dierolf and Schwanengel also consider the 

so-called "Three Space Problem": if N is a closed normal 

subgroup of G and both N and GIN are minimal (resp., 

totally minimal), is G then minimal (resp. totally minimal)? 

Their result, given in 7.7 below, may be compared with the 

statements of Theorem 3.1. (A group is totally sup-complete 

if all its Hausdorff quotients are sup-complete.) 

7.7. Theopem [EDS]. Let N be a (totally) sup-complete 

nopmal subgpoup of G. If both N and GIN ape (totally) 

minimal, then G is (totally) minimal. 

A more specialized resul~ from the same paper is the 

following. 

7.8. Theopem [EDS]. An Abelian topsion gpoup G is 

totally minimal if and only if it contains a closed nopmal 

subgpoup N such that N and GIN ape totally minimal. 

Somewhat surprisingly, minimality is less well behaved 

in this respect than its stronger counterpart, as the fol­

lowing example shows. 

a.7.9. Example [EDS]. Let N = LwAS ' let L be a two-

element SUbgroup of AS' define s: L ~ Aut N by s(y) «x~ )~<a.) 

= (yxsy-l)s<u' and let G = N 0 L be the semi-direct product 

as defined in [Bo, Sect. 111.2.10]. Then G is a non-

minimal torsion group with a closed, normal, totally 

minimal subgroup N such that GIN is the two-element group. 
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We describe briefly a recent, significant advance in 

the theory of minimal groups achieved by Dikranjan and 

Stojanov [DSjl], [Sjl]. 

Definition. An A-class is a class of minimal Abelian 

groups closed under the operations of taking products, 

closed subgroups and quotients, and containing all compact 

Abelian groups. 

For a pre-compact Abelian group G with Weil completion 

G, and for p a prime, let td (G) denote the subgroup of p 

G generated by those elements x of G such that ClG{xn : n E Z} 

is a compact Z--module; and let wtd{G) denote the smallest 
p 

subgroup of G containing td (G) for all primes p.
p 

7.10. Theorem [Sjl]. The class of all Abelian pre-

compact groups G such that wtd{G) eGis an A-class con­

taining all others. 

Also from [Sjl], we have the following results con­

cerning powers of minimal and totally minimal groups. For 

an Abelian topological group G, let the socle of G be the 

subgroup of G consisting of those torsion elements whose 

order is not divisible by the square of any prime. 

7.11. Theorem. Let G be a pre-compact Abelian group. 

The following are equivalent: 

(1) Ga is totally minimal for every cardinal a; 

(2) GG is totally minimal; 

( 3 ) wtd CG) c G.
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7.12. Theopem. Let G be a ppe-aompaat Abelian gpoup 

and let S be the soale of G. The following ape equivalent: 

(1) GU is minimal fop all aapdinals u; 

(2) GG is minimal; 

(3) fop some sequenae {k : p prime} of non-negative
p 

k 
integeps~ S + LP P.tdp{G) ~ G. 

p 

Moreover, if G is a totally minimal Abelian group, 

then GU is totally minimal for all U if and only if GU is 

minimal for all u. 

It turns out, however, that even the strongest result 

concerning the powers of the groups in a countable set 

guarantees little about the products of groups within the 

set. The following example is again due to Stojanov [Sjl]. 

7.13. Example [Sjl]. Let p be a (fixed) prime, let 

Z = Z /pnzp , and let G be the subgroup of (Z ) w 
(pn) p n (pn)
 

w n-l - w U
generated by $(Z n) and p ({Z n) ). Then G is 
(p )	 (p ) n 

minimal	 for all cardinals a, but n G is not minimal. 
nEN n 

8.	 Conditions Necessary for Minimality 

The results recorded in §7 above have been directed 

toward sufficient conditions for minimality. Until the 

ground-breaking papers of Prodanov [P2], [P3], in which pre-

compactness assumed a pivotal role, necessary conditions 

had proved more elusive. Except as noted, the following 

five results are from [P2], [P3]. 
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8.1. Theorem. Let G be a minimaZ AbeZian group and 

Sits socZe. Then for every non-empty open subset V of G 

there is an integer n such that finioteZy many transZates 

of V cover nG + s. 

Thus divisible subgroups, the socle, and finitely 

generated subgroups of G are all pre-compact. 

8.2. Theorem. Every AbeZian totaZZy minimaZ group 

is pre-compact. 

8.3. CoroZZary. The product of a minimaZ group and 

a compZete minimaZ AbeZian group is minimaZ. 

8.4. CoroZZary [DP2]. If G is a periodic divisibZe 

AbeZian group, then G admits minimaZ topoZogies if and 

onZy if G = un for some n < w. 

8.5. Theorem. Let G be a compZete minimaZ AbeZian 

group and H = nn<wcl(nG). Then H is compact, and for each 

neighborhood V of the identity there is n < w such that 

V + H ~ cl(nG). 

The paper [DP2] also contains a number of further 

structure theorems for periodic Abelian groups which admit 

minimal or totally minimal topologies. 

It is an attractive conjecture that commutativity is 

not necessary for the truth of Theorem 8.2. However, 

Dierolf and Schwanengel [DSI] produced the following 

pathological example of a totally minimal group which is 

not pre-compact and, which, incidentally, has a non-minimal 

subgroup. 
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8.6. Example. Let A be an infinite discrete space, 

X the permutation group on A with the finite-open topology, 

and 

Y Y(A) {x E X: {a E A: x(a) ~ a} is finite}. 

Then Y is a dense subgroup of X and can be shown to 

be minimal, so X is minimal, by Stephenson's analog of 

Theorem 7.l(b). Since X has no proper, non-trivial, closed 

normal subgroups, X is then (vacuously) totally minimal. 

But by Exercise X.3.l9 of [Bo], X is not pre-compact, 

since it has no completion. Moreover, if Al {an: n E Z} 

is a faithfully indexed subset of A and f: A + A is defined 

by f(a ) = a +l , f(a) = a if. a E A\AI , then the groupn n 

generated by f is an infinite, discrete, closed subgroup 

of X, and so non-minimal. 

Dikranjan and Stojanov found further conditions which 

imply pre-compactness for a minimal Abelian group. 

8.7. Theorem [DSj2]. If every subgroup of an Abelian 

topological group is minimal~ then the group is pre-compact. 

8.8. Theorem [Sj2]. If G is a minimal Abelian group 

and there is a pre-compact subgroup H of G such that every 

subset S of G/H independent over Z satisfies lsi < 2w~ 

then G itself is pre-compact. 

8.9. Theorem [Sj2]. If G is a torsion-free Abelian 

group without non-zero divisible subgroups~ then all com­

plete~ minimal group topologies on G are compact. 
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Another example due to Schwanengel [Sc] shows that a 

totally minimal group may be pre-compact but contain 

nevertheless a closed, non-minimal subgroup. Let p be a 

prime,	 C = Z/pZ, and A = Aut C = {m*: 1 < m < p - l}, 

where m*: x ~ rnx, and let a ~ w. Define a semi-direct 

product of Ca 
x Aa with itself by defining, in each 

coordinate, 

((m,n*), (s,t*)) (m + ns, (nt) *) . 

Now let Y = { ( (m~) , (n€) ) ~ <a E Ca x Aa : {~ < a: ~ O} ism~ 

finite} . Then Y is a totally minimal group [Sc] . Let C (a) 

be its	 projection onto Ca. Then c(a) x { (1) } is a closed 

normal	 subgroup of Y, which is not minimal since it has 

trivial intersection with the diagonal subgroup of the 

compact group Ca. 

We note finally that a question posed in [G2]--whether 

or not	 an Abelian group all of whose finite powers are 

minimal must have all powers minimal--has been answered in 

the negative; examples appear in [GC] , together with related 

results concerning cardinality. Among the problems of 

special interest·in this area which remain open, however, 

are those following. If all finite powers of a group are 

totally minimal or B(A), do all powers of it have this pro­

perty? Are minimal Abelian groups necessarily pre-compact? 

Do the	 character and pseudocharacter of minimal groups 

necessarily coincide [A]? 
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