TOPOLOGY PROCEEDINGS

Volume 6, 1981

Pages 345-349

http://topology.auburn.edu/tp/

δ -COMPLETENESS AND δ -NORMALITY

by

A. Garcia-Máynez

Topology Proceedings

Web: http://topology.auburn.edu/tp/

Mail: Topology Proceedings

Department of Mathematics & Statistics Auburn University, Alabama 36849, USA

 $\textbf{E-mail:} \quad topolog@auburn.edu$

ISSN: 0146-4124

COPYRIGHT © by Topology Proceedings. All rights reserved.

δ-COMPLETENESS AND δ-NORMALITY

A. Garcia-Máynez

1. Introduction

In this paper we introduce the notion of δ -normal cover. We prove that the collection of δ -normal covers of a (Tychonoff) space X is a compatible uniformity \mathcal{U}_{δ} of X and the completion δX of the uniform space (X,\mathcal{U}_{δ}) lies between the topological completion μX and the realcompactification νX of X. X is δ -complete if the uniformity \mathcal{U}_{δ} is complete. Any product of δ -complete spaces and any closed subspace of a δ -complete space happen to be δ -complete. We prove that δX may be seen also as the intersection of all paracompact open subspaces of βX containing X. We finally prove that a space X is δ -complete if and only if it is homeomorphic to a closed subset of a product of locally compact metric spaces.

2. All Spaces Considered in This Note Will Be Completely Regular and Hausdorff (T 316)

A collection A of subsets of X is a cozero family if each element A \in A is a cozero set in X. A is strongly cozero if for each $A' \subset A$, the set $\cup \{L | L \in A'\}$ is a cozero set. A is star-countable if for each A \in A, $\lambda_A = \{L \in A | L \cap A \neq \emptyset\} \text{ is countable. An open cover } A \text{ of X is said to be } \delta-normal \text{ if it has a star-countable cozero refinement. Recall a cover } A_1 \triangle -refines \text{ a cover } A_2 \text{ if } \{St(x,A_1) | x \in X\} \text{ refines } A_2. \text{ We express this fact symbolically as } A_1^{\triangle} < A_2. \text{ An open cover } A \text{ of X is } normal$

if there exist open covers A_1, A_2, \cdots of X such that $A_1^{\Delta} < A$ and $A_{m+1}^{\Delta} < A_m$ for each $m=1,2,\cdots$. A non-empty collection $\mathcal U$ of covers of a set X is a uniformity on X if for each pair $A_1, A_2 \in \mathcal U$ there exists $A_3 \in \mathcal U$ such that $A_3^{\Delta} < A_1$ and $A_3^{\Delta} < A_2$. Any uniformity $\mathcal U$ on a set X induces a topology $\tau_{\mathcal U}$ on X, namely, $V \in \tau_{\mathcal U}$ iff for each $x \in V$ there exists $A_x \in \mathcal U$ such that $\operatorname{St}(x,A_x) \subset V$. A uniformity $\mathcal U$ on a topological space (X,τ) is compatible if $\tau = \tau_{\mathcal U}$.

 βX denotes, as usual, the Stone-Čech compactification of X and we consider X as an actual subspace of βX . For each A \subset X, we define $A_{\star} = \beta X - \operatorname{cl}_{\beta X}(X - A)$. Observe A_{\star} is open in βX , $A_{\star} \cap X = \operatorname{int}_{X}A$ and A_{\star} contains every open subset of βX whose intersection with X is $\operatorname{int}_{X}A$. For each family $\mathcal{A} \subset \mathcal{P}(X)$, we write $L(\mathcal{A}) = U\{A_{\star} \mid A \in \mathcal{A}\}$.

We may now prove our first result:

2.1. Let A be an open cover of X. Then A is δ -normal iff there exists a paracompact open subspace L of βX such that $X \subset L \subset L(A)$.

Proof (Necessity). We may assume, with no loss of generality, that \mathcal{A} is cozero and star-countable. For each $A \in \mathcal{A}$, let A' be a cozero set in βX such that $A' \cap X = A$ and let $L = U\{A' \mid A \in \mathcal{A}\}$. Clearly $X \subset L \subset L(\mathcal{A})$ and $\{A' \mid A \in \mathcal{A}\}$ is a star-countable cozero cover of L (if $A'_1 \cap A'_2 \neq \emptyset$, then $A'_1 \cap A'_2 \cap X \neq \emptyset$ and hence $A_1 \cap A_2 \neq \emptyset$). Using the star-countable property, we may index \mathcal{A} as follows:

 $\mathcal{A} = \{A_{jm} | j \in J, m \in \mathbb{N} \},$ where $A_{jm} \cap A_{kn} = \Phi$ whenever j,k \in J, j \neq k and m,n \in N.

Hence, L is the free union of the locally compact Lindelöf spaces $\{L_j \mid j \in J\}$, where $L_j = U\{A_{jm}^i \mid m \in N\}$. Therefore, L is paracompact and open in βX .

 $(Sufficiency). \ \ \, \text{Being paracompact and locally compact,}$ L may be expressed in the form L = U\{L_j | j \in J\}, where the L_j's are Lindelöf, open in L and mutually disjoint. Consequently, the cover $\{A_* \cap L | A \in \mathcal{A}\}$ of L has a cozero and star-countable refinement \mathcal{A}_Z . The restriction of \mathcal{A}_Z to X is then a star-countable cozero refinement of \mathcal{A} .

Using the fact that every open cover of a paracompact locally compact space (or, more generally, of a strongly paracompact space) has a star-countable strongly cozero Δ -refinement, we obtain:

2.1.1. Corollary. Every δ -normal cover of a space X has a star-countable, strongly cozero, Δ -refinement. Hence, every δ -normal cover is normal and the collection \mathcal{U}_{δ} of all δ -normal covers of X is a compatible uniformity on X.

The following result will be needed later. We leave the details of the proof to the reader:

2.2. Let \mathcal{U} be a compatible uniformity on the space X that every finite cozero cover of X belongs to \mathcal{U} . Let $\mathbf{L} = \bigcap\{\mathbf{L}(\mathcal{A}) \mid \mathcal{A} \in \mathcal{U}\} \text{ and let } \mathcal{U}_{\mathbf{L}} \text{ be the collection of covers} \\ \{\{\mathbf{A_{\star}} \ \cap \ \mathbf{L} \mid \mathbf{A} \in \mathcal{A}\} \mid \mathcal{A} \in \mathcal{U}\}. \quad \text{Then } \mathcal{U}_{\mathbf{L}} \text{ is a compatible complete } \\ \text{uniformity on } \mathbf{L} \text{ which extends } \mathcal{U}.$

A space X is $\delta\text{-}complete$ if the uniformity \mathcal{U}_{δ} is complete. Observe any strongly paracompact (in particular,

any paracompact locally compact) space is δ -complete. Combining 2.1 and 2.2, we obtain:

2.3. The completion δX of $(X, \mathcal{U}_{\delta})$ may be viewed as a subspace of βX containing X, namely, as the intersection of all paracompact open subspaces of βX containing X. Hence, X is δ -complete iff there exist paracompact and open subspaces $\{L_{\frac{1}{2}}|j\in J\}$ of βX such that $X=\cap\{L_{\frac{1}{2}}|j\in J\}$.

We obtain another characterization of $\delta\text{-complete}$ spaces:

2.4. A space X is δ -complete iff it is homeomorphic to a closed subset of a product of locally compact metric spaces. Hence, every closed subset of a product of δ -complete spaces is δ -complete.

Proof. The class A of paracompact locally compact spaces is a subcategory of $T_{3\frac{1}{2}}$ which is inversely preserved by perfect maps. Hence, using 2.3 and the theorem in [Fr], we deduce that X is δ -complete iff it is homeomorphic to a closed subset of a product of members of A. The proof is completed observing that each Y ϵ A is homeomorphic to a closed subset of a product of a compact T_2 space and a locally compact metric space.

Since every countable cozero cover is δ -normal and every δ -normal cover is normal, we obtain, with the help of 2.2, a final remark:

2.5. For each space X, $\mu X \subset \delta X \subset \nu X$. Hence, every δ -complete space is topologically complete and every

realcompact space is δ -complete.

Bibliography

[Fr] S. Franklin, On epi-reflective hulls, Gen. Top. Appl. 1 (1971), 29-31.

Instituto de Matemáticas de la Unam