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CARDINALITIES OF H-CLOSED SPACES

Alan Dow and Jack Porter

0. Introduction »

A Hausdorff space X is H-closed if X is closed in every
Hausdorff space containing X as a subspace. Compact Haus-
dorff spaces are obviously H-closed and by the well-known
theorem of Arhangel’ski{, each first countable compact
Hausdorff space has cardinality at most c. The character

~of a space X,X(X), is the minimum cardinal such that each
point of X has a neigﬁborhood base of that cardinality.
R. Pol [Po] modified Arkhangelskii's method to show that

le < ZX(X)

for a compact Hausdorff space X. We deneralize
this result by showing that the same inequality holds for
H-closed spaces. The case for first countable H-closed
spaceé has been shown by a different technique by A. A.
Gryzlow [G].

In the first section we show that any infinite H-closed
space X can be embedded as the outgrowth of an H-closed
extension Y of a discrete space D such that X (Y¥) < X({X),

Y| = |X|, and Y\D is homeomorphic to X. We also show that
the existence of certain H-closed extensions of discrete
spaces is equivalent to partitioning compact spaces into
closed sets.

The second section contains our main results. That
is, for an H-closed extension Y of a discrete space,

Y| < 2X(Y). An immediate corollary to this result and

<X

the results in Section 1 is that |X| for H-closed X.
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In the third section we give an example of a first
countable H-closed space with cardinality less than c and
yet uncountable. Of course these examples are consistent
and contrast the compact case where for a first countable
compact Hausdorff space X, either |[X| < w or [X| = c. Also
in this section we present a technique for constructing
first countable quasi-H-closegd Tl spaces with arbitrarily
large cardinality and dense @iscrete subspaces of large
cardinality. This technique may prove useful for construct-
ing "real" examples of first countable H-closéd spaces with

cardinality B8 In the fourth section we conclude by using

1
this technique to construct special first countable
¢t-Linde18f spaces.

Our use of terminology and notation is standard; we
refer the reader to Willard [Wi] for undefined terms. We
will use Greek letters for infinite ordinals and cardinals
will be identified with initial ordinals. The cardinality
of a set X is denoted |X|, and the syccessor of a cardinal
k is k¥. When we speak of Kk as a topological space it will
be understood that x has the discrete topology. For a
Tychonoff space X, BX denotes the Cech-Stone compactifica-
tion. For a cardinal «, Bk is the set of ultrafilters on K.

A well known equivalence to X being H-closed is that
every open cover of X has a finite subcollection with dense
union. A subset U c X is regular closed if U = cl int U
and U is regular open if U = int ¢l U. A reguléf closed

subset of an H-closed space is itself H-closed. The semi-

regularization, Xs, of a space X is the underlying set X
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with the topology generated by the regular open subsets of
X. It is straightforward to show that x(Xs) <x(X). A
function f: X » Y is 6-continuous if for each x € X and
open V < Y with f(x):e V there is an open U c X with x € U
and f(chU)c:clYV,f isperfect if f+(y) is compact for each
y € Y and f is closed, f is irreducible if £(F) # Y for
each proper closed subset F of X. For A < X, define
£(a) = {y € Y: £(y) < A}. Note that £'(a) = Y\£(X\2);
in particular, if f'is a closed map and A is open, then
f#(A) is open. We will need the following fact in the

sequel.

0.1. Let Y be an H-closed extension of X and suppose
%2 is a space such that there is a continuous bijection
f: Z » Y\X. Then there ig an H-closed extension T of X
such that T\X =12 and x(T) < max{x(2),x(Y)}.

Proof. Let Y+ be the simple extension corresponding
to Y, i.e., the underlying set of Y+ is Y with U < Y+
defined to be open if U N X is open in X and if p € U\X,
then there is an opén neighborhood V of p in Y such that
vnixX=1uUn X. Y+ is an H-closed extension of X (cf.
[PV]) and vyt > Y. Let ¥Y* have the same underlying set as
Y with W € Y* defined to be open if W is open in Y* and
£ (W) is open in Z.  Clearly, Y* is an extension of X. If
U is open in Y, then U is open in Y*; so Y* is Hausdorff.
Since Y* is the continuous Hausdorff image of the H-closed
space Y+, Y* is H-closed. Also, f: 2 » ¥Y*\X is a continuous
bijection. If W i550pen in 2, then f(W) U X is open in Y*.
So, f is open and Z is homeomorphic to Y*\X. It is straight-

forward to show that X (Y*) < max {x(2),x(¥)}.
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1. Dense Discrete Suffices

The main purpose of this paper is to find a relation-
ship between the character of an H-closed space and its
cardinality. In this section we will show that it suffices
to find such a relationship for spaces with a dense set of
isolated points. Specifically we will show that for any
infinite H-closed space there is an H-closed space with a
dense set of isolated points with the same cardinality and
character as the first. We will begin by investigating
H-closed extensions of discrete spaces.

Let k be an infinite cardinal and suppose that Bx\«k
is partitioned into closed sets {Fi: i€ I}. We will let
Y=K U {Fi: i € I} be the Hausdorff space with the follow-
ing topology. A set U c Y will be open iff Fi € U implies
Fi c ClBK(U N k) for all i € I. The following theorem due

to Porter and Votaw [PV] will be essential.

Theorem 1.1. For i € I let Fi be a closed subset of
Bk\k. The space Y = k U {Fi: i € I} 2s H-closed 1ff
{Fi: i € I} is a partition of Bk\K.

Proof. We will omit the proof that Y is Hausdorff iff
the Fi's are disjoint. Suppose that Y is H-closed and that
p € Bk. Clearly p defines an open filter on Y. If p § Fi'
then there is a U € p such that ClBKU n Fi = . Therefore
{Fi} U k\U is a Y-neighborhood of F. which misses U. Since
Y is H-closed either p € Kk or there is an 1 € I with p € Fi'

The converse is straightforward as k is dense in Y.

Lemma 1.2. Let {Fi: i € I} be pairwise disjoint sub-

sets of BK\K. Suppose that A is the minimum cardinal such
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that each F, can be written as the intersection of X clopen

subsets of Bk. Then X (Y) = X where Y =k U {Fr: i€ I}.
Proof. Let i € I and choose Ad c k for a < X such

that F; =n_ _,cl; A . Let {/ be a filter base of cardinality

A generated by {Aa: a < A}. The set {{Fi} U U: Ue ¢} is

a neighborhood base for Fi in Y. Indeed, suppose V ¢ k is

such that F, ¢ cl, V. Since N cl, A < cl, V and

B <\ TBK BK

Bri\cl v is compact, there is a U € (/ with U < V. Therefore

B
x(¥) < x. It is clear that if {/ is a neighborhood base for

F, then F, = n{ClBK(U N k): UE€ {}; hence, x(Y) = A.

Recall that for a Hausdorff space X, RO(X) is the com-~
plete boolean algegra of reqular open subsets of X. The
absolute, EX, of X is the subspace of the Stone space of
RO(X) consisting of maximal filters of RO(X) with adherent
points in X. The canonical map m: EX » X is defined by
n(l/) = x where x is the adherent point of (/ and is onto,
perfect, irreducible, B-continuous. Now {ClExﬂ+(U): 9]
open in X} is a clopen basis for EX and n(clExn+(U)) =ecl U
for an open U < X. 1If X is H-closed then EX is compact and
EX is always extremally disconnected. The reader is referred
to the excellent survey by Woods [Wo] for more details.

For a space X and a cardinal A, Fc X is a Gx-subset
if F equals the intersection of ) open subsets of X. Note
that if X is compact zero dimensional and F is closed, then
this is equivalent to the intersection of )\ clopen subsets

of X.

Lemma 1.3. Let X be an H-closed space and let A = x(X).
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The absolute EX is partitioned by {n7(x): x € X} which are
all closed G,-sets in EX.

Proof. Let x € X and let {/ be an open neighborhood
base for x with |{/| < A. We claim that 7 (x) = {ClEXﬂ+(U):
U e l{/}. Since ClExﬂ+(U) is clopen for each x € X, this
will prove the lemma. Suppose y ¢ 77 (x). Then T(y) =
Z # X. Since X is Hausdorff, there is a U € (/ such that
z § cl,U. Therefore y € clEXne(X\cle) which is a clopen
neighborhood of y which misses clExn+(U). Hence

Yy § clgym (U).

Our next result is the one which ties everything

together. It is surprising in its simplicity.

Theorem 1.4. Let XA and K be infinite cardinals. If
there is a compact Hausdorff space X which can be partitioned

into K nonempty closed G,-subsets, then Bk\K can be parti-

A
tioned into K nonmempty closed Gk—subsets of Bk.
Proof. Let {Aa = o < Kk} be a partition of X where A

is a nonempty closed Gx—subset of X! ~Since k*w = k, there

is a function f: k¥ + X such that |f+(A;)| = 8,. Extend f

to a continuous function Bf: Bk + cle(K) = Y. For each

o < kK, let 2 = (Bf)+(A )\ff(A ); clearly, Z_ < Bk\k. Also,
o o o a —

-subset of Bk since Bf is continuous, Aa is a

Za is a GA

G,-subset of X, and f+(Aa) is countable. Now, ¢ # ClBKf+(Aa)\

A
K Za and {Za: o < Kk} is a partition of Bk\k with nonempty

closed sets.

Theorem 1.5. The following are equivalent:

(a) There is an H-closed space X with |X| = k and
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x (X) < AL

(b) There is an H-closed extension Y of x with |Y| = «
and x (Y) < X.

(c) There is a compact Hausdorff space which can be
partitioned into k many closed Gx—subsets.

Proof. The proof of (a) implies (b) follows from 1.3,
1.2, and 1.4. By 1.3, (b) implies (c). By 1.3, 1.4, and

1.2, (c) implies (b). _Clearly (b) implies (a).

For an H-closed space X, by Theorem 1.5, theére is an
H-closed extension Y of k where |X| = k such that [Y| = «
and x(Y) < x(X). This extension is constructed as follows:

(1) There is a function f: k - EX such that |f (1 (x)) |
= 8, and Bf: Bk -+ EX denotes the continuous extension of f.

(2) Let g = Bf| (Bx\x) and, for x € X, F_ = (u o g) (%) .
Then {FX: X € X} is a partition of Bx\k with nonempty com-
pact sets, and g is onto.

(3) Let Y =« U {FX: X € X} where Wc Y is defined to
be open iff FX € W implies F < ClBK(w n k). Now, Y is
H-closed, has the simple extension topology, i.e., Y = Y+,
and x(Y) < x(X).

(4) Modify the topology on Y to the strict extension
topology (cf. ([PV]), i.e., let Y# be Y with the topology
generated by {T: T c k} where T="TU {FX: T € ﬂFX} (recall
that p € Fx < Bk\k is an ultrafilter on k implying that
nF is filter on k). Now, {T: T c k! is an open basis for

# #

Y", and Y' is an H-closed extension of x. Also, for T < «,

it is easy to show that T = T U {F,: F < ClBKT}'

(5) Let z = Y'\«, and define ¢: Z » X by ¢(F) = x.
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Note that if A < %, then ¢ (A) =7 o g(U{Fx: Fx € A}). For
B c Bk\k, recall that (m o g)#(B) = {x € X: (m o g)+(x) < B}.

Thus, for T ¢ k, it follows that ¢ (T\T) = {x € X: F cecl KT}

B
_ #
= (m o g) (ClBKT\K)'

Theorem 1.6. ¢: Z - X is an open, O-continuous bijec-
tion.

Proof. Since ¢ is a bijection, it suffices to show ¢
is open and 6-continuous. Let T c x. Since ¢(%\T) =
(m o g)#(ClBKT\K) and 1T o g is closed, then ¢ is open as
{%\T: T c k} is an open basis for Z. To show ¢ is 6-con-

tinuous, let U be an open neighborhood of x € X. Then

]

“ . . +
clEXﬂ (U) is clopen in EX and ﬂ(ClEXﬂ (U)) cl U. Then

W = g+(cl ﬂ+(U)) is clopen in Bk\k and Fx c W. So, for

EX

some T <k, F, < cl, T\T ¢ W. Now, F, € T\T and ¢ (T\T) =

B
(m o g) (clBKT\K) c 71 e g(W) c clU.

By Proposition 1 of Fedorcuk [F], Zs and Xs are homeo-
morphic. Our next result extends part of 1.5 and is an

interesting variation of the Alexandroff duplicate.

Corollary 1.7. If X is an infinite H-closed space,
then there is an H-closed extension hk of k where x = |X]|
such that hx\k is homeomorphic to X and x(hk) < x(X).

Proof. By 0.1 and 1.6, there is an H-closed extension
hk of k such that hk\k is homeomorphic to X and Y+ > hk > Y#
where Y is described in (3). Also, by 0.1, x(hk) < max{x(Y#L
x(X)}. By (3), x(Y+) = x(Y) < x(X). It is easy to show

that x(Y+) = x(Y#) for any extension Y. Thus, x(hk) < x(X).
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The result of 1.7 gives rise to the problem of identi-
fying those Hausdorff spaces which are the remainders of
H-closed extensions of discrete spaces. If X is a Hausdorff
space with a coarser H-closed topology, then it follows by
0.1 and 1.7, that X is the remainder of an H-closed extension
of some discrete space. J. Vermeer has communicated to the

authors that the converse is true.

2. The Main Result

In [Po), Pol has given a simple proof that |X| < 2x (X)
for a compact Hausdorff space X. 1In this section, we adapt
Pol's proof to H-closed spaces with a dense set of isolated
points. Then we use the results of the first section to

extend to arbitrary H-closed spaces.

Theorem 2.1. Let X be an H-closed extension of a
discrete space D. Then |X| < 2x (%)

Proof. Let k = x(X) and y: P(D) » D be a choice func-
tion, i.e., for E € P(D)\{B}¥(E) € E. Recall that if A c X
with |a| < 2% then lelal < 2 since x(X) < k [J2]. We fix
a neighborhood base {G(x,a): o < k} for each x € X. For

Fc X and h: F > x, let G(F,h) = UxEFG(x’h(X))’

We inductively define, for o < K+, Aa c D with

|a | < 2°

o as follows. Choose d0 € D and let A, = {d_}.

0 0

Suppose for Y < o we have defined A_. Let A = U A U
Y Q y<a 'y
{¢ (D\G(F,h)): F is a finite subset of ClXUY<dAY' h: F » «
K

and D\G(F,h) # @}. Since IClXUY<dAY| < 2%, there are at

most 2° pairs (F,h) where F is a finite subset of

cl,U__A_ and h: F » k. Therefore |A | < 2. Let
X y<a'y ol = ;
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Y = chU +Aa and observe that Y = U +ClXAa since
a<K a<K

x (X) < k and {Aa: a < K+} is a chain. Suppose that X\Y # g.

Since Y is closed and D is dense there is a d € D\Y.

Define h: Y » k such that d § G(x,h(x)) for x € Y. Clearly

{G(x,h(x)): x € Y} is a cover of Y and since Y is H-closed

(UAa is dense) there is a finite set F ¢ Y such that G(F,h)

is dense in Y. However there is an a < K+ such that

P E-Clea which implies that Y (D\G(F,h)) € Aa+l' This

contradicts that G(F,h) is dense in Y. Therefore Y = X

and |X| = |¥] < [el, U (A : a < <] < 25,

Definition 2.2 [G). The H~pseudocharacter wH(X) of
a space X is the smallest cardinal A such that for each
point x € X there is a system {Ua: a < A} of neighborhoods

of x such that {x} = n{chUa: a < Al.

If the H-pseudocharacter of an H-closed space X is A

then the semiregularization of X has character A, in fact,

V(X)) = x(Xg) < x(X).

Corollary 2.3. Let X be an infinite H-closed space,

Yy (X)
then |X| < 2 H < 2X(X).

Proof. Let X be an H-closed space. The semiregulari-
zation of X, say Y, is H-closed and x(Y) = wH(X). By 1.5,
there is an H-closed space Z which has a dense set of iso-
lated points and |zZ| = |x|, x(2) < x(Y¥). Therefore, by

Yy (X)
2.1, (x| = |z] < 2XB) < 2B,
Since a zero set is a closed Gw—set, by 1.5 and 2.1,

we obtain the following corollary which is also immediate
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from a result by Arhangel'skii [A; Th. 4].

Corollary 2.4. No compact Hausdorff space can be

partitioned into more than ¢ nonempty zero sets.

Remark 2.5. Let X be a Hausdorff space. The weak
Lindelof number of X, denoted wL(X), is defined to be
min{k: each open cover of X has a subfamily of cardinality
no greater than k whose union is dense in X}. 1In [BGW],

Bell, Ginsburg and Woods prove that for a normal space Z,

|z < 2X (Z)WL(Z) They also give an example of a Hausdorff

non-regular space Y such that |Y] > X (V)WL (Y)

X (X)wL (X)

They ask
whether it is true that |X| < 2 when X is regular.
Since a reqular closed subset of X has the same weak Linde-
16f number as X one can easily see how to generalize 2.1.
That is, if X contains a dense set of isolated points then

< X KIWL(K)

| X| Note that if X is H-closed WL(X) = w.

3. First Countable

In this section we investigate in greater detail the
possible cardinalities of first countable H-closed spaces.
It is well known that if X is first countable and compact
Hausdorff, then |X| = ¢ or |X| < Bo- Since we now know that
for H-closed spaces [X| < 2X(X), one would naturally wonder
whether it is possible for a first countable H-~closed space
to have cardinality Bq-

We have constructed in [DP] a first countable R-closed
space of cardinality By suggesting that this may be possible

for H-closed. We give a consistent example of a first

countable H-closed space which is uncountable but of
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cardinality less than c. We also investigate a technique
for constructing first countable H-closed spaces which to
date has only given quasi-H-closed spaces.

By 1.5 {(c¢) we know that there is a first countable

H-closed space of size ¥, if there is a compact space

1

which can be. partitioned into Nl zero sets. In the Cantor

space, Zw, each closed set is a zero set. The following
theorem was first proved by J. Baumgartner (unpublished) and
rediscovered by A. W. Miller ([Mi].

8
Theorem 3.1. It is consistent that 2 0. 81 and that

Y is the wy union of non-empty disjoint closed sets.

2

To say that a statement P is consistent is to say that
there is a.model of ZFC in which P is true. The proof of
Theorem 3.1 requires knowledge of forcing and is therefore
omitted. Stern [St] and independently Kunen have shown
that 3.1 holds in any random real extension of a model of

CH.
In order to show absolutely that there is a first

countable H-closed space of cardinality ¥, it suffices to

1

show that Bwl\wl or fw\w can be partitioned into w, zero

1

sets of Bwl or Bw, respectively. We do not know if this

can be done but we can show that each is the union of Nl

zero sets of Bwl or Buw, respectiveiy. Let el be the first

countable weakly inaccessible cardinal and o, be the first

1
measurable cardinal.
We show that for each o < 6, there is a T, quasi-H-

closed first countable space of cardinality o and for each
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o < a, there is a first countable quasi-H-closed T, space

1 1
of cardinality 2%, a space is quasi-H-closed if each open

cover has a finite subcollection with dense union [PT].

3.2. To construct these spaces we introduce a method
of constructing first countable spaces which seems par-
ticularly suited to gquasi-H-closed spaces. Let N be the
positive intergers and let I be any non-empty set. For any
D E'NI, let, for each 1 € I and n € N, G(n,i) = {d € D:
d(i) > n} U {i}. Let X =D U I be given the following
topology. Each point of D is isolated and a neighborhood
base for i € I is {G(n,i) : n € N}. With this topology X
is a first countable T,-space. If we wish X to have special
properties we have to make careful selections of the set D.
For the remainder of the paper when X = D U I where D c NI

we will assume that X is given the above topology.

Lemma 3.3. Let D c NT and X = D U I. The space X is

quasi-H-closed 1ff D is closed discrete in NI.

Proof. Suppose that X is quasi-H-closed. Let h € NI,

we must find a finite F < I such that {4 € D: le = h|F}

I

is finite. For a subset F < I and f,g € N*, f|, < g| will

¥
mean f(i) < g(i) for all i € F. Since X is quasi-H-closed

the open cover D U {G(h(i),i): i € I} has a finite subcollec-
tion with dense union. Therefore there is a finite F « I such
that UiEFG(h(i)'i) contains all but finitely many d € D.

By the definition of G(h(i),1i), D\UiEFG(h(i)’i) = {d € D:

dIF < h|F}. Therefore {d € D: le = th} is finite.

The converse is more difficult. Let D < NI be closed
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discrete. We will find, for h € NI, a finite set F(h) clI
such that {d € D: le(h) < hIF(h)} is finite. Let h € NI

and suppose that for each finite F < I, D(F) = {d € D:

d|F < h]F} is infinite. There is then a free ultrafilter

p € BD\D such that D(F) € p for each finite F ¢ I. Now, for
each i € I, let 9;¢ gD ~» Clﬂ{%: n € N} be continuous and

gi(d) = l/d(i) for d € D. Since D({i}) € p and d € D({i})
implies gi(d) > l/h(i), g;(P) > l/h(i) for each i € I.
Therefore l/gi(p) € N for each i € I. Let f € NI be such
that £(i) = l/gi(p) for i € I. We will show that f is in

the closure of D. Let F be a finite subset of I. For each

i € F we can choose A; € p such that for 4 € A, gi(d) = gi(p).
However this’ implies that for d € nieFAi € p, fIF = le.

Since ni€FAi is infinite, we have contradicted that D is
closed discrete in NI. Note that this contradiction comes

from the assumption that gi(p) # 0 for each 1 € I only.

(See Corollary 3.4). Therefore for each h € Nt there is a
finite F(h) < I such that {d € D: dIF(h) < th(h)} is finite.
Now any open cover of X is refined by D U {G(h(i),i): i1 € I}

I
for some h € N°. Therefore {d € D: dIF(h) < hIF(h)} u

UiEFG(h(i)’i) is a union of a finite subcollection contain-

ing D.

As pointed out in the proof of 3.3 we have the next

result.

Corollary 3.4. If D < NI is closed discrete, then

BD\D is the union of |I| zero sets of @D.
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We need the following results of Mycielski, Mrowka

and Juhasz.

Theorem 3.5 [Myl. For o < 81, N* has a closed discrete

subset of cardinality o.

: o
Theorem 3.6 [Mr] and [Jl]. For o < oy, N(2 ) has a

celosed discrete subset of cardinality a.

Remark 3.7. It is immediate that for o < 61 (resp.
a < al), there is a first countable quasi-H-closed T, space
of cardinality a (resp. 2%). However a simple example of
a first countable, quasi-H-closed Tl space of arbitrary
cardinality A is a quotient of (w+l) x A where w+l is the
one point compactification of w and {n} x ) is identified
to a point for each n € w; note that this space has only a

countable dense set of isolated points.

In order to construct X =D U I, for D c NI, to be
Hausdorff one would need, of course, that for i # j € I thereg
is an n € N such that G(n,i) N G(n,j) = . By 3.3 and 2.1,
if D is closed discrete and |D| > c this cannot be done.

We do not know if this can be done for [D| = 8;. However

we give our own proof of 3.5 for o = 8., in case it may be

1
adaptable to yield a Hausdorff space by 3.3. Notice that
by 3.4 and 3.5 Bml\ml can be covered by Wy Zero sets.

A partially ordered set (T,<) is a tree, if for each
X € T, the set {y € T: y < x} is well ordered by <. The
order x, 0(x) is the order type of {y € T: y < x}. A branch

is a maximal linearly ordered subset of T and is an a-branch
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if it has length a. PFor x € T and B < 0(x), xls will be

the unique y < x with 0(y) B. The a-th level of T is the

set U = {x € T: 0(x) = o} and T| = U . The length of

Up<a o
T is sup{0(x) + 1l: x € T}. A tree T is an Aronszajn tree
if each level of T is countable, length of T is wy but T
has no wl—branches. N. Arsonzajn showed that there are

Aronszajn trees [Ku]l.

3.8. Let us first show that Bw\w can be covered by

an increasing w, chain of zero sets. We are grateful to

1
Eric van Douwen for this proof. Let B be a Boolean algebra
of cardinality Hl which contains a dense Aronszajn tree T
[Jel. That is, for each 0 # b € 8, there is a t € T\{0}
such that t < b. Let X be the Stone space of . Since the
weight of X is Nl, there is a continuous map from Bw\w onto
X [Pal]. For each t € T, [t] is the clopen subset of X con-
sisting of all ultrafilters on 8 which contain t. For each
a < wy, let 2, = X\U{[t]: t € T, 0(t) = o). Since T has no

wl—branches X=1U Z .
a<wy "o

3.9. We now know that there is a first countable

w
H-closed space of cardinality Bl iff there is a Dc N 1

closed and discrete such that X =D U Wy is Hausdorff. Let
us therefore show how to find a closed discrete subset of
Nwl. Let {Aa: o < wl} be a strictly increasing indexing
of the limit ordinals less than wg - For each a < wy arbi-

trarily choose a countable closed discrete subset of

[Aa’xa+l) ‘
N , say D(a). Let T be an Aronszajn tree. For

each a < w, let D(a) = {da(t): t eTla+l}' For each s € T

1
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wi

let fs € N be defined by, for each o < 0(s), £

|
s [AG,A )

a+l

= da(sla) and for 0(s) < a < w; f_ = d (s). We

1 Pyrrge)

w
will show that D = {fs: s € T} is closed discrete in N l.

Notice that {f s € T} ordered by inclusion is iso-

|
s AO(s)

morphic to T. The essential idea now is that for each

a < wy everything branches into a closed discrete subset

[Aa’xa+l)
of N . So the only possible accumulation point of

w
D is an wl-branch. However there are none. Let h € N 1

and let § < w

1 be the supremum of {a < w;: hl[Xa,X

a+l)

da(ta) € D{a)}. If 8 < w

) then h|[>\(S is not a limit

rAs+1)
point of D(§) and hence h is not a limit point of D. There-

fore assume ¢ = w Since T contains no wl—branch there is

1°

a smallest o < w,; such that for some B < a tB % ta' Let

1
B be the smallest B < o such that tg % t,. For y € {a,B)

choose a finite subset F. < [A_,A } such that for
Y Y v+l

de D(Y)\{dY(tY)},d|FY # dY(tY)IFY. Now suppose s € T and

£ lp yr = Blp yp - By the definition of f_, s|B = tg and
B a B "a
s|, = t, (if 0(s) < y then s]Y = s). Since t; % t , we must

have that 0(s) < a and s = t_. Therefore |{d € D: 4| =
o FBUFa

hIF UF }| < 1 implying that D is closed and discrete.
B o

4. Another Application

The technique developed in Section 3 lends itself very
nicely to constructing first countable spaces with another

covering property. Therefore we have included this sec-

tion as an application of the technique. A space X is
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K-Lindelof if each open cover of X has a subcover with
cardinality less than k. In [BG], Bell and Ginsburg show
that it is independent with ZFC whether there is a first
countable Lindeldf (= Bl—Lindelbf) extension X of the
such that |X\w

discrete space w < w. We generalize

1 lI
this result to arbitrary cardinals k by showing it is con-
sistent that there is a first countable K+-Linde16f exten-
sion X of k¥ with |x\«¥| < K. We also slightly improve
their result by weakening the assumption.

A set § c N is called bounded if there is an £ € N
such that for each g € ¢ the set {0 € k: g(a) > £(a)} is
finite. A set § c¢ N is called dominating if for each
£ € N there is a g € § such that {a € «: £(a) > gla)} is
finite. Let B(k,A) denote the statement: any subset of
N with cardinality A contains a bounded subset of cardi-
nality A. Let D(x,)) denote the statement: there is a
dominating family § < N° of size A. B(w,wl) (equivalent to
the well-known B(wl)) is a consequence of MAC and is inde-
pendent with ZFC. We do not know the situation for B(K,K+)
for x > w. D(K,K+) follows trivially from GCH, and the
statement D(w,wl) and 2% > wy is known to be consistent.

We first show the following generalization of a result

in [BG].

Theorem 4.1. B(K,K+) implies there is no Hausdorff
first countable K+—Linde15f extension X of «t with
| x\k T | < K.

Proof. Suppose that X is such an extension. Let for

ieI-= X\K+,G(n,i) be a shrinking neighborhood base at i.
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For o € K+, da € NI is defined such that da(i) = min{n:

o ¢ G(n,i)}. If [{d : o < k*}| < ¥ then there is a

a€D={d: ac< «*} such that [{a € et a, = d}| = <.

However, for each i € I, G(d(i),i) n {o € K+: da =d} = g.

This implies that {o € S da = d} is closed discrete in

X contradicting that X is kt-Lindeldf. Now by B(K,K+)

there is a subset D. ¢ D and an h € N’ such that Ip; | = <

1
1 Fd = {i € I: d(i) » h(i)} is finite.
Since |I| < |Dl|’ there is a finite set F « I and D

and, for each d € D

2 €D

2| = «* so that Fq = F for each d € D,. Similarly,

since there are only countably many functions from F to N,

with |D

+ such that

there is an h;: F » N and a D; = D, with |Dg| =

hl|F for each d € D;. Finally, let h

and h

K
_ I
d|F = , € N7, be such

2|F = hl|F 2|I\F = hII\F. Now for each d € D,

d < h, which also contradicts that X is «'-Lindeldf.

Now, we construct our first countable K+—Linde16f

that h

extensions of K+. Recall that K8 = Z(KX: A < K).

Example 4.2. Assume K = k and D(K,K+). We shall
construct a first countable, zero-dimensional, Hausdorff
K+—Linde16f space X containing kt as a dense and discrete
subspace such that |X\K+| < K. We are going to choose an
index set I with |I| = « and find D ¢ N' so that X =D U I
will be first countable Hausdorff and K+—Linde16f. The semi-
regularization of X will be zero-dimensional. We shall need
D to satisfy

(1) («"-Lindel®f) for each h € NI, |{d € D: d(i) < h(i)

for all i € I}| < «x.
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(ii) (Hausdorff) for i # j there is an n(i,j) € N such

that for 4 € D d(i) > n(i,]) implies d(j) < n(i,]).

let I =U N* (i.e. I is the set of all sequences of

<K
positive integers of length less than k). Since k6 = K,
|1] = k. We will think of I as a tree ordered by inclusion;

recall the definition of 0(i) from Section 3. Thus, for

i € I, 0(i) = domain of i and 0(i) < k. By D(k,k'), there

T so that for each h € Nt there is a g € ¢’ with

|{i € I: h(i) > g(i)}| < w and |§¢’| = «¥. For each n ¢ N,

is a §’c N

define §¢(n) = {g + n: g € ¢’} (i.e. (g+n) (i) = g(i)+n).
let § = UneNg(n). It is easy to see that for any h ¢ NT
there is a g € § such that g(i) > h(i) for all i ¢ I. Let
g=1g,: a< '} be a well ordering of §.

We will inductively choose, for § < K+, dg € N so
that each of the following hold.

(a) o < & implies ga(i) < dg(i) for some i € I.

(b) If 4

(i) = 1, then d_(j) = 1 for all j 2 i.

g €
(¢) If i € j and dE(j) > 1, then j(0(i)) = dE(i)'
Suppose that A < k¥ and for £ < X we have defined

dE € Nt satisfying (a)-(c). Since |A| < k, we can reorder

{ga: o < A} and {dE: & < A} with order type <x. Therefore

without loss of generality and for ease of notation, sup-

pose that A = k. We shall recursively define dk through

the levels of I.

Define dx(ﬂ) = go(ﬂ) + do(ﬂ) + 1. Suppose for § < «

and for i € Ua<6Na we have defined dx(i) satisfying (b)

and (c¢) and such that for each a < § there is an i € N* with

dx(i) = ga(i) + da(i) + 1. It follows from (b) and (c) that
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o . . _ .
a<sN : dg(l) > 1} forms a chain and let & = U{i:

dg(i) > 1 and 1 € Ua<6

a < 6, dk(jla) = 1 define d,(j) = 1 and (b) is satisfied.

{i€eu

N*}. For j € N(S such that for some

If § is a limit then 2 € N° and we define dk(l) = gg(2) +
ds(2) + 1. If 6 = a + 1 then we define 4, (3) = gé(j) +
ds(3) + 1 if j € N® and j(@) = d,(L]a), otherwise for

j € N(S dx(j) = 1. This clearly satisfies (c).

Let us check that (a) holds for dx. If a < X then
there is an i € N” such that d, (i) = g (i) +d (i) + 1.
This fact also ensures that for o < A da # dx.

Let X = D U I be endowed with the topology described
in 3.2. To show that X is kt-Lindeldf it suffices to show
that any open set containing I contains all but k many of
the elements of D. This is equivalent to showing that,
for h € NT, |{d € D: d(i) < h(i) for all i € I}| < k. How=-
ever by the definition of ¢ there is a g, € ¢ such that

9y > h. Now, by construction, for each £ > o there is an

i € I such that dg(i) > g, (i) > h(i) by (a).

It is a little trickier to show that X is Hausdorff.
Let 1 # J € I, we must find n € N so that, for d € D,
d(i) > n implies d(j) < n. First suppose that i and j are
incomparable. Conditions (b) and (c¢) imply that for each
d € D one of d(i) and d(j) is 1. Therefore assume that i < j
and that i € N*. Note that, for 4 € D, d(j) > 1 implies
that d(i) = j(a) by (c). Therefore let n = j(a) and
d(i) > n implies d(j) < n. The case j « i is identical by
symmetry.

We will now take the semiregularization of X to make

it zero-dimensional. Recall that for n € N and i € I,
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G(n,i) = {i} U {d € D: d(i) > n}. We will show that
cl G(n,1i) is clopen, for i € N* and n € N, by showing the

following two Ffacts.

Faet 1., If j € cl G(n,i)\G(n,i), then i € j and
j(0(i)) > n. ,Recall that if i and j are incomparable, then
d(i) > n > 1 implies that d(j) = 1 and G(1,3j) N G(n,i) = .
Also if j < i, then by (c¢), d(i) > n > 1 implies that
d(j) = i(0(j)) for 4 € D. Therefore G(i(0(j)),3j) n G(n,i) = 4.
Finally if i « j and j(0(i)) < n, then G(1,j) N G(n,i) = #.
Indeed if d(j) > 1, then d(i) = j(0(i)) < n and therefore

d ¢ G(n,i).

FPaet 2. If j € cl G(n,i)\G(n,1i), then G(l,j) < cl G(n,i).
For if 4 € D and d(j) > 1, then d(i) = j(0(i)) > n by Fact 1.

Therefore, d € G(n,i). This completes the proof.

Remark. Bell and Ginsburg's [BG] construction for
K = w required CH. We have slightly strengthened this

result since D(w,wl) and 2¥ > w, is consistent.

1
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