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G-SPACES: PRODUCTS, ABSOLUTES AND 

REMOTE POINTS 

Thomas J. Peters 1 

1.	 Introduction 

The purpose of this paper is to catalogue some of the 

topological properties of G-spaces. The work presented 

here is not exhaustive. 

The difficulty and complexity of the definition of a 

G-space has led us to consider more manageable related 

properties, some weaker and some stronger than the G-space 

property itself. Fortunately, many of these properties are 

important and interesting in their own right. Among the 

matters we discuss relevant to G-spaces are disjoint topo

logical unions, n-bases, strong G-spaces, products which are 

G, products which are not G, preservation of G-spaces by 

functions, absolutes of G-spaces and passage to subspaces. 

The material included here which most directly contrib

utes to the theory of remote points concerns strong G-spaces. 

The hypothesis of a strong G-space may be used as an alterna

tive to normality in the Chae and Smith theorem (2.9) 

1 h	 . . h h'T ese results constltute a portlon of t e aut or s 
doctoral dissertation, written under the supervision of W. W. 
Comfort at Wesleyan University, Middletown, Connecticut. The 
author gratefully acknowledges Wesleyan University's financial 
support. Moreover, deep thanks are due to W. W. Comfort for 
the sharing of his wonderful mathematical insight, intuition 
and philosophy--a process which helped to make this work 
possible. The author also acknowledges, with appreciation, 
many helpful and stimulating discussions and cornnlunications 
with S. B. Chae, A. Dow and A. W. Hager. Thanks are also 
due to the referee, whose many helpful comments improved 
both the mathematical content and the exposition of this 
article. 
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concerning the existence of remote points. utilizing this 

variant of the Chae and Smith theorem, we provide a partial 

solution to a problem of Woods concerning homeomorphic dense 

subspaces of v~rious remainders. We generalize a result 

of Dow concerning remote points of large products. These 

three results--(l) the variant of the Chae and Smith theorem 

(8.2), (2) the partial solution of Woods' problem (8.3), 

and (3) the geqeralization of Dow's result (8.7)--are closely 

related and ar~ principal contributions of this work. 

The above comments indicate our successes in the study 

of properties of G-spaces. We achieved only limited success, 

however, in two important areas: the characterization of 

strong G-spaces, and the determination of products which 

are G-spaces. Three challenges calling for further investi 

gation are (1) characterize strong G-spaces, (2) determine 

if G-spaces are finitely productive, and (3) determine 

interesting conditions on an infinite family of G-spaces 

which will ensure that their product is a G-space. 

2.	 Basic Preliminaries 

All our spaces are completely regular and Hausdorff. 

Many of our results, particularly amongst the product 

theorems, may be proved under milder separation hypotheses, 

but we leave such tasks as exercises for the interested 

reader. Also, in order to avoid trivial technicalities, all 

our spaces are assumed to have at least two points. As is 

cornmon terminology, we use the phrase "infinite product" to 

refer to a product whose indexing set is infinite. The 

phrases "countable product " and "finite product" have 

corresponding meanings. 
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The symbol w denotes the least infinite cardinal; 

wl ,w 2 ,··· are its immediate cardinal successors. The 

Greek letters a, y, and A will always denote infinite 

cardinals. The Greek letter K will be used to denote a 

cardinal, either finite or infinite. Cardinals are repre

sented by initial ordinals. The space w always has the 

discrete topology. Cardinality of a space X is denoted 

by IXI. 
For terminology not specifically defined below, see 

[CoN]. 

Let X be a space. The notation bX denotes a compacti

fication of Xi SX denotes the Stone-Cech compactification 

of Xi EX denotes the absolute of X (defined below (2.7)) i 

cX denotes the cellularity of Xi nX denotes the n-weight of 

X (defined below (2.5)); TX denotes the set of remote 

points of X (defined below (2.1)); T(X) denotes the family 

of open subsets of Xi T*(X) denotes the family of non-empty 

open subsets of X. The subspace 6X\X will be abbreviated 

as X*. 

The symbol R denotes the real line with the usual 

topology. The notation U(a) denotes the space of uniform 

ultrafilters on the discrete space a. That is, 

U(a) = {p E S(a): IAI = a for all A E p} 

The symbol ~ denotes disjoint topological union. If 

X and X' are homeomorphic spaces, we write X ~ X'. 

2.1 Definition. Let X be a space. A point p E bX\X 

is bX-remote for X if there is no nowhere dense subset A 

of X such that p E c£bXA. When a point is eX-remote, it 
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will simply be called a remote point (for X). 

2.2 Definition. A space X is a G-space if for each 

non-empty, open subset U and each n < w, there exists a 

family F(U,n) of non-empty sets with the n-intersection 

property such that 

(i) if F E F(U,n), then FeU and F = C~xF; 

(ii) if V is a dense open subset of U, then there is 

F E F(U,n) such that F c V. 

2.3 Definition. A family F(U,n) as in Definition 2.2 

is said to be a G-family (for U and n) . 

2.4 Definition. A space X is strong G if both X and 

aX are G-spaces. 

We note that the properties of being G and of being 

strong G are topological properties in the sense that if X 

and Yare homeomorphic spaces and X is a G-space (or, a 

strong G-space), then Y is also. 

2.5 Definition. Let X be a space. A n-base of X is 

a collection B of non-empty open subsets of X such that-

each open subset of X contains an element of B. The 

n-weight of X (designated nX) is the least cardinality of 

a n-base of X. 

2.6 Definition. A family S which can be represented 

in the form S = uS, where each S is locally finite, isn<w n n 

said to be a-locally finite. A space with a a-locally 

finite n-base will be called a a-n space. 
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2.7 Definition. For a space X, the absolute of X 

(denoted EX) is that unique (up to homeomorphism)
 

extremally disconnected space that can be mapped onto X
 

by a perfect, irreducible, continuous function. (For
 

further details, see the survey [Wo ].)
3

The following theorems were crucial to our work and
 

are essential for the understanding of the sequel.
 

2.8	 Theorem (van Douwen [vD]). If X is a nonpseudocom

2
cpact space with countable TI-weight~ then X has remote
 

points.
 

2.9	 Theorem (Chae and Smith [CS]). If X is a non

cpseudocompact normal G-space~ then X has at least 2 remote 

points. 

2.10 Theorem (Chae and Smith [CS]). A space with a 

a-locally finite n-base is a G-space. In particular, every 

metric space is a G-space. 

2.11 Theorem (van Douwen and van Mill [vDvM]). The
 

space w x U(w ) has no remote points.
2 

2~l2 Theorem (Dow [D ]). If Y is a compact space with
4
 

cY > wI' then the space w x y
W has no remote points.
 

3.	 Elementary Properties 

We characterize G-spaces by means of their n-b~ses. 

This simple result is quite useful. Other elementary 

properties of G-spaces are also discussed. For the sake
 

of later reference, we fixs·t stat.e a trivial result.
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3.1 Theorem. Let {Xc}~ be a family of spaces. The 
l:> s<a 

space ~s<aXs is G if and only if X is G for each S < a. 
s 

3.2 Remarks. By technical modifications of proofs 

from the literature [vDvM], [D ], it can be shown [P ] that4 2

if a is an infinite cardinal and X is a compact space such 

that (1) X is covered by nowhere dense P +-sets, or (2) 
a 

X = rr~<aX~ such that cY~ > a+ for each ~ < a, then a x X 

has no remote points, when a is discrete. Since a x X is 

a disjoint topological union which is nonpseudocompact and 

normal, its failure to have remote points implies that 

a x X is not a G-space (2.9). Hence, X is not a G-space. 

We also note that Dow [D4 ] gives other examples of 

compact spaces X such that w x X has no remote points. 

Each such space X is also not a G-space. 

We now consider the importance of n-bases in the 

definition of a G-space. 

3.3 Theorem. For a space X, the following are equiva

lent: 

(1) There exists a n-base of X consisting of G-spaces; 

(2) X is G; and 

(3) every n-base of X consists of G-spaces. 

Proof· (1) ~ (2). Let B be a n-base of X such that 

each B E B is a G-space. Let U E T*(X). There exist B, 

B' E B such that C~XB' c B c U. Since B' is an open sub

set of the G-space B, we have that ctBB' is a G-space [CS]. 

Note c~BB' = C~XB'. 
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Now consider B' as an open subset of the G-space 

ciBB', and let n < w. There exists a family F(B',n) of 

non-empty sets with the n-intersection property such that 

(i) if F E F(B' ,n), then FeB' and F = CiCiBB,F, and 

(ii) if V' is a dense open subset of B', then there exists 

F E F(B' ,n) such that F c V'. 

Now let F(U,n) = F(B' ,n). Since CiBB' cixB', and 

since if V is a dense open subset of U then V n B' is a 

dense open subset of B', it is easy to see that F(U/n) is 

a G-family. 

(2) ~ (3). If X is a G-space, then each U E t*(X) is 

a G-space [CS]. 

(3) ~	 (1). Obvious. 

3.4 Corollary. Let X be a space and let y be a dense 

open subspace of x. Then X is G if and only if Y is G. 

Later we will see that every dense subspace of a 

G-space is a G-space (7.17). However, arbitrary subspaces 

of G-spaces need not be G. 

3.5 Example. Let X = w2 ' with the discrete topology. 

Clearly, X is G and SX is G (3.4). But U(w 2) c SX and 

U(w 2 ) is not G (2.11), (3.2). Thus, arbitrary subspaces 

of G-spaces need not be G-spaces. 

4.	 Strong G- spaces 

We are now able to discuss more fully the class of 

strong G-spaces. The class of strong G-spaces is of par

ticular interest because it properly contains the class of 
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spaces of countable n-weight and later (8.2) we will see 

that each nonpseudocompact strong G-space has remote points. 

4.1 Theorem. Every space X of countable n-weight is 

a strong G-space. 

Proof. It is easy to see that nX = nSX = w. But 

every space of countable n-weight is a G-space (2.10). 

4.2 Theorem. If X is a locally compact G-space or 

if X has a n-base of singletons, then X is a strong G-space. 

Proof. Corollary 3.4. 

For other examples of strong G-spaces, see (7.22, 7.23, 

8.5, 8.7). 

It remains an open problem to "characterize strong 

G-spaces." (We know that a metrizable space need not be 

strong G (7.19).) Even though our knowledge of strong 

G-spaces is not complete, we are able to use the property 

in the context of our search for remote points (§8). 

As the locally compact G-spaces have some particularly 

nice properties, we present three results which may help one 

to determine if a particular locally compact space is G. 

These results are due to W. W. Comfort [co 3 ]. 

4.3 Theorem. Let X be a locally compact space. Let 

U be a non-empty open subset of X which contains no isolated 

points and which has compact closure. Let F(U) be a family 

of closed subsets of X such that (i) if F E F(U), then 

FeU, and (ii) if V is a dense open subset of U, then 

there exists F E F(U) such that F c V. Then F(U) does not 

have the finite intersection property. 
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Proof. Suppose F(U) has the finite intersection pro

perty. Since C,{l,xU is compact, there exists pEn F(U). 

Since U\{p} is dense open in V, there exists F E F(V) such 

that F c V\{p}. We have p E F c V\{p}, a contradiction. 

4.4 Corollary. Let X be a locally compact G-space. 

Let V be a non-empty open subset of X which contains no 

isolated points and which has compact closure. Let F(V,n) 

be a G-family. Then, for any subfamily F(V) c F(V,n) such 

that F(V) has property (ii) of the previous theorem, F(u) 

does not have the finite intersection property. In particu

lar, the G-family F(V,n) does not have the finite intersec

tion property. 

4.5 Corollary. Let X be a locally compact space. Let 

V and F(U) be as defined in Theorem 4.3. Let 0 = {V: 

V is a dense open subset of V}. Let <p: 0 -+ F (U) be an 

assignment function such that for each V ED, <p (V) c V. 

Then <p is not monotone--that is, <p cannot be chosen so 

that if v l 'V2 ED and VI c V2 then <P (VI) c <P (V2 ). 

Proof. Without loss of generality assume that <P is 

onto F (0) • (If necessary, replace F(U) by {<p (V): V ED}.) 

Assume that <p is monotone. 

We present a contradiction by showing F(U) has the 

finite intersection property. Suppose m < wand {Fk}k<m 

is a finite subset of F (U) • For each k < m, let V E 0k 

such that <P(Vk ) Fk · 
Let V = nk<mVk· Clearly V E 0 and 

V c V for each k < m. We have <P(V) ~ ~ and if <p isk 

monotone, <P(V) c nk<m<P(Vk ) = nk<mFk. 
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But since {Fk}k<m was an arbitrary finite subset of
 

F(U) we have obtained the desired contradiction.
 

5.	 Finite Products of G-ispaces 

We have been able to identify a class of G-spaces which 

is finitely productive, but we have been unable to answer 

the following question: "If X and Yare G-spaces, must 

x x Y be a G-space?" The proof of the following theorem 

follows easily from (3.3). 

5.1 Theorem. If X and Yare G-spaces each having a 

n-base whose eZements are a-n spaces, then X x Y aZso has 

a n-base whose eZements are a-n spaces, and X x Y is a 

G-space. 

6. Infinite Products and G- spaces 

We now consider infinite products of G-spaces. Our 

first result, based on work of A. Dow [0 ], shows that an4 

infinite product of G-spaces need not be G, even when each 

finite partial product is strong G. We next display an 

infinite product which is G even though no finite partial 

product is G. These examples demonstrate the difficulty 

of characterizing the G-property with respect to the forma

tion of products. 

6.1 Example. Let w + 1 be the one point compactifica
2 

tion of the disc±ete space w Clearly, w + 1 has an-base2 . 
2 

of singletons; thus, for each n < w, (w + l)n is a strong
2 

G-space (4.2). However, we know that (w + l)w is not G2
 

(3.2). So, strong G-spaces are not countably productive.
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Similar arguments show that for any discrete a > wI' a Y is 

not a strong G-space. (See also Theorem 7.24.) 

Before producing an example of an infinite p~oduct 

which is G even though no finite partial product is G, 

we present a theorem which gives sufficient conditions for 

an infinite product to be a-n. The concise proof'given 

here employs techniques utilized by Tkachenko [T]. For an 

alternative proof, see [P 2 ], which also contains ~any other 

related results. 

6.2 Theorem. Let {X~}~<a be a family of spaces and 

let	 A = sup{nx~} + a. If there exists a countably infinite 
E:<a 

subfamily of spaces which are not pseudo-A-compact then 

nx~ is a-n. 
~<a 

Proof. Without loss of generality, assume that the 

countably infinite subfamily of spaces which are not 

pseudo-A-compact is {X~}~<w. Note that nx~ = A for each 

~ < W [Col]. 

For each n < w, let 

y= TTxx TIx. 
n ~<n+l ~ w~~<a ~ 

Note, also, that nY A for each n < w. For each n < w,
n 

let U be a n-base for Y such that I U I = A, letW be a n n n n 

subset of T*(X ) such thatW is locally finite and n n 

\Wnl A, and let f be a one to one function f : Un ~Wn+l. n n
 

For each n < w, let
 

B n = {U x f (U) x n X~: U E Un}·n 
n+l<~<w 

Let 8	 u B. It is easy to see that B is a a-locally
n<w n 

fini te n-base for IT X~. 
~<a 
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We are now in a position to give the promised example. 

We note that the interested reader could easily construct 

other such examples. 

6.3 ExampZe. Let X = 0 x U(w ),	 where 0 is a discrete
2 

w2 
space	 of cardinality 2 . We know that X is not a G-space 

(3.2). For each n < w, ~ 0 x	 (U(w ) )n. But, sincexn 
2

nU(w 2 ) can be covered by nowhere dense P-sets, (U(w
2 

» can
 

n
also be covered by nowhere dense	 P-sets. Hence, (U(w »
2 

n w w wis not G (3.2), and X is not G (3.1). But X ~ 0 x (U(w 2 » 

which is o-n (6.2), hence G (2.10). 

6.4 ExampZe. There exist spaces X and Y such that X 

is	 G, Y is not G, but X x Y is G. Let X = ow, where 0 is 

w2 
a discrete space of cardinality 2 , and let Y U(w ).

2

The product X x Y is a o-n space (6.2), hence it is also a 

G-space (2.10). 

So, even for finite products to be o-n or G, it is not 

necessary that each factor be G. For further results on 

products which are G-spaces, see (7.23, 8.5, 8.6, 8.7). 

7.	 Absolutes and Subspaces 

In this section we show that certain functions preserve 

the G-space property. As a result, we are able to conclude 

that a space is G if and only if its absolute is G. We 

prove that every dense subspace of a G-space is a G-space. 

We show that a space is strong G if and only if it has a 

n-base whose elements are strong G-spaces. We give a neces

sary condition for a product to be a strong G-space. 
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7.1 Defintion [vM]. A function f: X ~ Y is called 

quasi-open if for each U E T*{X}, inty f{U} ~ ~. 

A lemma similar to the one we prove below is found in 

7.2 Lemma. Let X and y be spaces. Let f: X ~ y be a 

continuous~ closed~ quasi-open function from X onto Y. 

If T E T*{Y} and S is a dense open subset of T~ then 

-1 -1
f {S} is dense open in f {T} • 

-1 . -1
Proof. That f {S} is open is clear. Suppose f {S} 

is not dense in f-l{T}. Then there exists W E T*{X} such 

that W c f-l{T} and W n f-l{S} ~. But then f{W} c T and 

f{W} n S ~. Hence int f{W} n S = ~, contradicting they 

density of S. 

7.3 Theorem. Let X and y be spaces. Let f: X ~ Y 

be a continuous~ closed~ quasi-open function from X onto 

Y. If X is a G-spaee~ then Y is a G-spaee. 

Proof. Let T E T*{Y} and n < w. Since f 
-1 

{T} E T*{X} 

and X is G, there exists a G-family F{f-l{T},n}. Let 

F(T , n) = {f (F): F E F (f-1 (T) , n) } • Then F(T , n) is a G- f ami 1 y • 

Remark. It is easy to see that continuous open sur

jections do not, in general, preserve the G-space property. 

Consider the G-space X x Y, defined in (6.4), and consider 

the natural projection onto Y. 

The following definition and lemmas are from Ponomarev 
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7.4 Definition [Pol] · Let f: X -+ Y be a function and 

Ac X. The small image of A, denoted f#(A) is the set 

f# (A) = {y: y E Y and f- 1 (y) c A}. 

7.5 Remark. Note that Y\f#(A) f(X\A) [Pol] · 

7.6 Lemma [p02 ]. A function f: X -+ Y from X onto Y 

is closed if and only if for each U E T(X)~ f#(U) E T(Y). 

7.7 Lemma [P0 2 ]. A continuous function f: X -+ Y from 

X onto Y is irreducible if and only if for each U E T*(X)~ 

f#(U) ~ ~. 

7.8 Theorem. If a continuous~ closed function from 

X	 onto Y is irreducible~ then it is quasi-open. 

Proof. Lemmas 7.6 and 7.7. 

7.9 Lemma [p0 ]. Let f: X -+ Y be a continuous~ closed
2 

irreducible function from X onto Y. If U E T*(X) and V is 

a dense open subset of U~ then f#(V) is a dense open subset 

of f# (U) . 

Proof· That f# (V) is open is clear. Let W be a non-

empty open subset of f# (U) . Let B f- 1 (W) n V and note 

B E T*(X). So f#(B) and f#(B) c f # (V) . Further, f#(B) c~ ~ 

f(B)	 c W. So f#(V) n W ~ and f# (V) is dense in f# (U) .~ 

7.10 Theorem. Let f: X -+ Y be a continuous~ closed~ 

irreducible function from X onto Y. If Y is G~ then X is 

G. 

Proof. Let U E T*(X) and n < w. By (7.6) and (7.7), 

we see that f#(U) E T*(Y}. Since Y is G, there exists a 
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# -1 #G-family F(f (U},n). Let F(U,n} = {f (F): F E F(f (U},n}}. 

Note that if V is a dense open subset of U, then by (7.9), 

there exists F E F(f#(U},n} such that F c f#(V}. It is then 

immediate that f-l(F} c V and that F(U,n} is a G-family 

(for U and n). Hence, X is a G-space. 

Combining the previous results (7.3), (7.8), and (7.10), 

we have the following corollaries. 

7.11 Corollary. Let f: X + Y be a continuous 3 closed3 

irreducible function from X onto Y. Then X is a G-space if 

and only if Y is a G-space. 

7.12 Corollary. A space is a G-space if and only if 

its absolute is a G-space. 

7.13 Theorem. If X is a locally compact space and 

Y is a space such that X x Y is G3 then Y is a G-space. 

Proof. Let U E T*(X} with c~xu compact. Since X x Y 

is G, so also c~xu x Y is G [CS]. But then the natural 

projection TI: c~xU x Y ~ Y is a continuous, closed, open 

surjection, so Y is G (7.3). 

We focus on subspaces of G-spaces. Our principal 

results are that the members of the G-families F(U,n} may 

be taken to be regular-closed sets, and that any dense 

subspace of a G-space is a G-space. 

7.14 Lemma. Let X be a G-space U E T*(X)3 n < wand3 

F(U,n+l) a G-family. Then {int F: F E F(U,n+l)} has the 
x 

n-intersection property. 
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Proof· Suppose there exist FO'··· ,F - l E F{U,n+l)n 

such that int ni<nFi = ni<nintx Fi =~. Then U\ni<nFi isx 

a dense open subset of U and, hence, there exists 

F E F{U,n+l) such that F c U\n.< F .. Then F n n. F. = ~, 
1 n 1 l<n 1 

which is a contradiction to the n+l intersection property 

of F{U,n+l). 

7.15 Theorem. Let X be a G-space. Then the members 

of the G-families may be taken to be regular-closed sets. 

Proof. Let U E T*{X), n < wand F (U,n+l) be a G-family 

(for U and n+l). Let F' (U,n) {c£x int F: F E F (U,n+l)}.x 

It follows from the previous lemma that F' (U,n) is a G-family 

(of regular-closed subsets of X) for U and n. 

Before we show that any dense subspace of a G-space 

is a G-space, we state the following lemma, whose easy 

proof is left to the interested reader: We use Lemma 7.16 

only in the proof of Theorem 7.17. 

7.16 Lemma. Let X be a space, Y a dense subspace of 

X, U E T*{Y) and U' E T*{X) such that U = u' n Y. Let V 

be a dense open subset of U and let V' E T*{X) such that 

V = V' n U and V' c U'. Then V' is dense in U'. 

7.17 Theorem. If X is a G-space and Y is a dense 

subspace of X, then Y is a G-space. 

Proof. Given U E T*{Y) and n < w, choose U' E T*{X) 

such that U = u' n Y, and F{U',n+l) is a G-family for U' 

and n+l. By Lemma 7.14, if F E F{U' ,n+l) then int F ~ ~. x 

So, the density of Y guarantees that for each F E F (U',n+l), 
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F n y ~~. Let F(U,n) = {F n Y: F E F(U',n+l}. Note that 

F(U,n) has the n-intersection property (7.14). Let V be a 

dense open subset of V. Then there exists V' such that V' 

is a dense open subset of V' and V = V' n V (7.16). Since 

F(V',n+l) is a G-family there exists F E F(U',n+l) such that 

F c V' c U'. But then, F nyc V' n u' n Y = V' n U V. 

That is, there exists F n Y E F(V,n) such that F nyc v. 

Hence, F(V,n) is a G-family and Y is a G-space. 

7.18 Corollary. The following are equivalent. 

(1) X is a strong G-space (that is, both X and eX are 

G-spaces) ~ 

(2) eX is G~ 

(3) bX is G for every compactification bX of X~ 

(4) bX is G for some compactification bX of x. 

Proof. That (2) implies (3) follows from (7.11). 

That (4) implies (1) follows from (7.11) and (7.17). The 

oth~r implications are obvious. 

7.19 Remark. The converse of Theorem 7.17 is false. 

For example, when w is discrete and w + 1 is its one2 2 

point compactification, the metric space w~ is a dense 

subspace of (w + l)w (which is not a G-space (6.1)).
2 

Since (w + l)w is a compactification of w~, it is clear
2 

that the metric space ww is not a strong G-space (7.18).
2 

7.20 Theorem. If X has a n-base whose elements are 

strong G-spaces~ then X is a strong G-space. 

Proof. Let B be a n-base for X such that each B E B 

is a strong G-space. It suffices to show SX is G (7.18). 
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Let U= {U: U E 1*(SX) and U n X = B for some B EB }. 

We show that (a) U is a collection of strong G-spaces; 

(b) U is a n-base for SX. 

(a) Let U E U and B E B such that B = U n X. Then 

c£SxB = c£sx(U n X) = C£SXU, which is a G-space (7.18) 

(because B is a strong G-space). But c£sxB is a compactifi

cation of U so U is a strong G-space (7.18). 

(b) Let V E 1* (SX). There exists B E B such that 

B c V n x. Let U E U such that B = U n X. Then B c (U n V) 

n X c U n X = B, and therefore B = (U n V) n X E B. Thus, 

we have that U n V E U. 

Hence, SX has an-base U whose elements are (strong) 

G-spaces. Therefore, SX is a G-space (3.3). 

7.21 Corollary. For a space X3 the following are 

equivalent: 

(1) There exists a n-base for X consisting of strong 

G-spaces; 

(2) X is strong G; and 

(3) every n-base of X consists of strong G-spaces. 

Proof· (1) ~ (2). Theorem 7.20. 

(2) ~ (3). Let U E 1*(X). Since SX is a G-space, 

c£sxu is a G-space [CS]. Hence, U is a strong G-space 

(7.18) . 

(3) ~ (1). Obvious. 

7.22 Corollary. Let {X~}~<a be a family of spaces. 

The space ~~<uX~ is strong G if and only if X~ is strong 

G for each ~ < u. 
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We show that certain products are strong G-spaces. 

7.23	 Theorem. Let X be a strong G-space with an-base 

of singletons. Then Y is a strong G-space if and only if 

X x Y is a strong G-space. 

Proof· (~) Since X has a n-base of singletons and 

SY is a G-space, we have that b(X x Y) = SX x SY is a 

G-space (3.3). Hence, X x Y is a strong G-space (7.18). 

(~) Since X x Y is a strong G-space, we have that 

SX x	 SY is a G-space (7.18). The natural projection 

n: SX x SY ~ SY satisfies the hypotheses of Theorem 7.3. 

SO, SY is a G-space, and hence Y is a strong G-space (7.18). 

We show that the class of strong G-spaces is better 

behaved with respect to products than the class of a-n 

spaces and the class of G-spaces. Previously, in (6.3) 

we gave an example of a large product which was a-n and G 

even though no finite partial product had the corresponding 

property. We show now that no such pathology is available 

in the class of strong G-spaces. 

7.24 Theorem. Let {X~}~<K be a family of spaces such 

that X = n X~ is strong G. Then each partial product of 
~<K 

X must be a strong G-space. In particular~ each X~ is a 

strong G-space. 

Proof. Let K C K. Note that X ~ nx~ x TT X~. 
~EK ~EK\K 

Since X is strong G, the product S(TTxs) x S( n X~) is 
sEK ~EK\K 

G (7.18). The natural projection 

n:	 S ( IT X~) x S ( n X~) + S ( n X~) 
~EK ~EK\K ~EK 

shows that S( TTX~) is G (7.3). Hence, TTX~ is a strong 
sEK ~EK 
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G-space	 (7.18). 

8. Strong G-Ispaces: Remote Points, a Problem ofWoods and Generalization 
of a Theorem of Dow 

This section contains a principal contribution of this 

work, namely, the triad of results: (1) a variant of a 

theorem of Chae and Smith (8.2), (2) a partial solution to 

a problem of Woods (8.3), and (3) a generalization of a 

result of Dow (8.7). 

Theorem 8.1 and Corollary 8.3 generalize results of 

van Douwen [vD, 4.2], [vD, 4.4]. We have modified van Douwen's 

arguments so that they now apply to strong G-spaces. Corollary 

8.2 is a variant of the Chae and Smith Theorem concerning the 

·existence of remote points. 

8.1 Theorem. Let X be any strong G-space. If A is any 

non-empty	 Go subset of SX such that A c X*, then A contains 

2cat least remote points of x. 

Proof. Let Y = SX - A. Since sy = SX, it is clear that 

Y is nonpseudocompact [W, 1.57]. Further, Y being an Fa of 

SX implies that Y is normal. And Y is a G-space (7.17). 

Hence, Y has at least 2c remote points (2.9). But every 

remote point of Y is a remote point of X, since every 

nowhere dense subset of X is nowhere dense in Y. 

8.2 Corollary. If X is a nonpseudocompact strong 

G~spaae, then X has at least 2c remote points. 

Proof. Since X is nonpseudocompact, there exists a 

non-empty Go subset A of SX such that A c X* [W, 1.57], and 

A contains at least 2c remote points of X. 
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8.3 Corollary. If X is a realcompact strong G-space, 

then TX is a dense subspace of X*. Furthermore, x* and 

(EX)*	 have homeomorphic dense subspaces. 

Proof. Since X is realcompact, each point of X* is 

contained in a Go subset of eX which misses X [W, 1.53]. 

For a proof of the second statement of the theorem, see 

8.4	 Remark. Woods [wo ] posed the problem "Characterize3 

those (real-compact) spaces X for which X* and (EX)* have 

dense homeomorphic subspaces." Although Corollary 8.3 does 

not provide a solution to his problem, it does provide 

many new examples of spaces having the desired property. 

We consider the class of nonpseudocompact strong 

G-spaces and the class of nonpseudocompact normal G-spaces 

and we demonstrate that neither class is a subclass of the 

other. 

8.5 Example. We present a nonpseudocompact strong 

G-space which is not normal. The example we give is a 

variant of a space described by Steen and Seebach [SS], 

and called (by them) the Thomas Plank. 

Let w + 1 be the one-point compactification of wand 

let wI + 1 be the one-point compactification of the 

discrete space wI. 

Let	 X = « w + 1) x (w1 + 1» - {( w, wI) } · 

The space X is nonpseudocompact since the collection 

of open sets {(n,n): n < w} is locally finite. The space 

X is strong G because it possesses a n-base of singletons 

(4.2) • 
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We show X is not norma1_ Let A { (n, w1): n < w} and 

let B = {(w,s): S < w1 }. Th~n A and B are disjoint closed 

subsets of X which cannot be contained in disjoint open 

subsets of X. 

By Corollary 8.2, X has remote points. Since X is not 

normal, Theorem 2.9 is not directly applicable. We remark 

that X is also locally compact. 

8.6 Example. A nonpseudocompact normal G-space need 

not be a strong G-space. 

Let w2 + 1 be the one-point compactification of the 

discrete space w2 . with w2 discrete, let X = w~ x (w + l)w.
2 

Then X is a nonpseudocompact, normal [St], G-space (2.10, 

6.2). However, (w + l)w is not a G-space (6.1) and, thus,2 

X is not strong G (7.24). 

Dow [0 ] defined the concept of a good TI-base. It1 

follows easily that any space with a good n~base is also a 

G-space. Hence, we offer the following modest genera1iza

tion of a theorem of Dow. 

8.7 Theorem. If {X~}~<K is a family of spaces of counta

bZe n-weight and if {Y.}. is a finite family of spaces
1 l<n 

each possessing a n-base consisting of elements of countable 

n-weight, then X = TI Xc x TIY. is a strong G-space. 
S<K ~ i<n 1 

Furthermore, if X is nonpseudocompact, then X has at least 

2c remote points.
 

Proof. Let U be a TI-base for X such that if U E U,
 

then U = TT Us' where TIU = w, for each E;, < K + n. Let s
~<K+n 
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bU = TT BU~. Note that for each ~ < K + n, nSu~ = TIU~ = w. 
~<K+n 

Hence, bU has a good n-base [01 ] and is, therefore, a G-space. 

But bU is a compactification of U. So, U is a strong G-space 

(7.18). Thus, X is a strong G-space (7.20). The last state

ment of the theorem follows from (8.2). 

8.8 ExampZe. Let a > wand let L(a) be the long lin.: 

on a. Consider the sp~ce RK 
x L(a). Clearly, L(a) has 

a n-basis of which;'each element has countable n-weight, so 

RK 
x L(a) is a nonpseudocompact, strong G-space, which has 

at least 2c remote points. Note, however, that nL(a) = 

a > w, so that DOw's work [01 ] is not directly applicable. 

8.9 Remark. Many spaces satisfying the hypotheses of 

Theorem 8.7 are also nowhere locally compact. Note that for 

any nowhere locally space with remote points, we can 

exhibit points p and q in the remainder such that f(p) ~ q 

for any automorphism f of the remainder [VW]. Thus, we are 

able to demonstrate why such remainders are not homogeneous. 

We offer another variant of the Chae and Smith theorem 

(2.9) concerning the existence of remote points. We have 

not found any spaces which satisfy the hypotheses of Theorem 

8.10 but fail to satisfy the hypotheses of previously 

stated, more tractable theorems. 

8.10 Theorem. Suppose X is a nonpseudoaompaat G-spaae 

satisfying the aonditions: 

(1) Every nowhere dense subset of X is aontained in a 

nowhere dense zero set of x. 
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(2) If Z is a zero set of X and F is a regular closed 

subset of X such that Z and Fare disjoint then Z and F3 

are completely separated.
 

Then the space X has remote points.
 

Proof. Since X is a nonpseudocompact G-space, there 

exists a free ultrafilter Fof closed subsets of X, no mem

ber of which is nowhere dense [CS]. without loss of gener

ality, assume that each F E F is a regular closed set [CS], 

(7.15). If A is a nowhere dense subset of X, then there 

exists a nowhere dense zero set Z such that A c Z. For each 

such Z, there exists F E F such that Z n F =~. Hence, 

c£SXZ n c£SxF =~. Thus, each point of n{c£SxF: F E F} is 

a remote point of X. We note that n{c£SxF: F E F} is non

empty, because {c£SxF E F} has the finite intersection pro

perty. 

8.11 Remark. Every ccc space satisfies condition (1) 

above. That result is due to A. Hager [H] and we include 

it as Lemma 8.12 below. Spaces satisfying condition (2) 

above are objects of study in their own right. J. Mack [M] 

has investigated such spaces and he terms them weakly 

a-normally separated. 

8.12 Lemma (Hager [H]). Let X be a space. If X is 

ccc and D is a nowhere dense subset of X3 then there exists 

a nowhere dense zero set Z of X such that D c z. 

Proof. Let V = X\C~XD. Since V is an open subspace 

of X, V is ccc. Let W be a cover of V by cozero subsets of 

X. There exists a countable subfamily {W~}~<w c Wsuch that 

U~<wW~ is dense in V [CoH]. Let Z = X\U~<ww~. 



143 TOPOLOGY PROCEEDINGS Volume 7 1982 

9.	 Questions
 

The following is a summary of what we consider to be
 

the most important unresolved problems deriving from our
 

work.
 

9.1 Characterize strong G-spaces. 

9.2 Is the class of G-spaces finitely productive? 

9.3 Determine conditions on an infinite family of
 

G-spaces which will ensure that their product is G.
 

Specifically, if {X~}~<a is a family of spaces such that
 

each countable partial product is G, then must the full
 

product be G?
 

9.4 Does there exist a space satisfying the conditions 

of Theorem 8.10 which does not satisfy the conditions of 

more	 tractable theorems? 

9.5 Do there exist non-G-spaces X and Y such that
 

x x Y is G?
 

9.6 Do there exist spaces X and Y such that neither X 

nor Y is a o-n space but X x Y is a o-n space? 
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